Low-temperature synthesis of LiMnPO4/RGO cathode material with excellent voltage platform and cycle performance

被引:42
作者
Fu, Xiaoning [1 ]
Chang, Kun [1 ]
Li, Bao [1 ]
Tang, Hongwei [1 ]
Shangguan, Enbo [1 ]
Chang, Zhaorong [1 ]
机构
[1] Henan Normal Univ, Sch Chem & Chem Engn, Collaborat Innovat Ctr Henan Prov Green Mfg Fine, Key Lab Green Chem Media & React,Minist Educ, Xinxiang 453007, Peoples R China
基金
中国国家自然科学基金;
关键词
Lithium ion battery; lithium manganese phosphate; low temperature synthesis; high voltage platform; graphene oxide; LITHIUM-ION BATTERIES; VANADIUM-DOPED LIMNPO4; SOLID-STATE METHOD; ELECTROCHEMICAL PERFORMANCE; LIFEPO4/C NANOCOMPOSITES; CO; COMPOSITES; KINETICS; LIMN2O4; FE;
D O I
10.1016/j.electacta.2016.12.161
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Pure and well-crystallized LiMnPO4/reduced graphene oxide (RGO) nanopowders are synthesized by adding a small amount glucose and graphene oxide simultaneously in dimethyl sulfoxide (DMSO)/H2O, under constant atmospheric pressure and at low-temperature (108 degrees C). The scanning electron microscopy (SEM) and transmission electron microscopy (TEM) images show that the addition of different amounts of graphene oxide can significantly affect the particle size and morphology of LiMnPO4/RGO composites. With small amounts of graphene oxide (1 and 3 wt.%), the small LiMnPO4 particles are wrapped in RGO, in a cocoon-like structure. This special morphology can be maintained after a rapid carbon coating treatment at high temperature. Electrochemical studies show that these cocoonlike C-LiMnPO4/G nanocomposites not only have a higher discharge specific capacity, but also show improved high voltage platform and high rate cycle performance. When the added graphene oxide is 3%, the specific capacity of C-LiMnPO4/G nanocomposite is 160.8 mAh g(-1) at 0.05 C, the discharge capacity in the area of more than 4.0 V is up to 115 mAh g(-1), accounting for 70% of the total discharge capacity. The proposed C-LiMnPO4/G nanocomposites also exhibit an outstanding high rate capability, where the discharge specific capacity at 1C can reach to 99.6 mAh g(-1) and after 1000 cycles at 5 C, it still has 83% of capacity retention. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:272 / 282
页数:11
相关论文
共 39 条
[1]   DMSO-Assisted Liquid-Phase Synthesis of LiFePO4/C Nanocomposites with High-Rate Cycling as Cathode Materials for Lithium Ion Batteries [J].
Chang, Zhao-rong ;
Liu, Yao ;
Tang, Hong-wei ;
Yuan, Xiao-Zi ;
Wang, Haijiang .
ELECTROCHEMICAL AND SOLID STATE LETTERS, 2011, 14 (06) :A90-A92
[2]   Optimization of Synthesis Conditions for LiFePO4/C Nanocomposites by Dimethyl Sulfoxide Assisted Solution-Phase Method [J].
Chang, Zhaorong ;
Tang, Hongwei ;
Liu, Yao ;
Yuan, Xiao Zi ;
Wang, Haijiang ;
Gao, Shuyan .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2012, 159 (04) :A331-A335
[3]   The influence of improved carbon coating layer with nanometer-sized CeO2 interconnector on the enhanced electrochemical performance of LiMnPO4 [J].
Chen, Fang-Jie ;
Tao, Fen ;
Wang, Chun-Mei ;
Zhang, Wen-Long ;
Chen, Li .
JOURNAL OF POWER SOURCES, 2015, 285 :367-373
[4]  
Chen L., 2013, J. Nanomater, V2013, P1
[5]   Thermal stability and phase transformation of electrochemically charged/discharged LiMnPO4 cathode for Li-ion batteries [J].
Choi, Daiwon ;
Xiao, Jie ;
Choi, Young Joon ;
Hardy, John S. ;
Vijayakumar, M. ;
Bhuvaneswari, M. S. ;
Liu, Jun ;
Xu, Wu ;
Wang, Wei ;
Yang, Zhenguo ;
Graff, Gordon L. ;
Zhang, Ji-Guang .
ENERGY & ENVIRONMENTAL SCIENCE, 2011, 4 (11) :4560-4566
[6]   LiMnPO4 Nanoplate Grown via Solid-State Reaction in Molten Hydrocarbon for Li-Ion Battery Cathode [J].
Choi, Daiwon ;
Wang, Donghai ;
Bae, In-Tae ;
Xiao, Jie ;
Nie, Zimin ;
Wang, Wei ;
Viswanathan, Vilayanur V. ;
Lee, Yun Jung ;
Zhang, Ji-Guang ;
Graff, Gordon L. ;
Yang, Zhenguo ;
Liu, Jun .
NANO LETTERS, 2010, 10 (08) :2799-2805
[7]   Synthesis of vanadium doped LiMnPO4 by an improved solid-state method [J].
Dai, Enrui ;
Fang, Haisheng ;
Yang, Bin ;
Ma, Wenhui ;
Dai, Yongnian .
CERAMICS INTERNATIONAL, 2015, 41 (06) :8171-8176
[8]   Developments in nanostructured LiMPO4 (M = Fe, Co, Ni, Mn) composites based on three dimensional carbon architecture [J].
Dimesso, L. ;
Foerster, C. ;
Jaegermann, W. ;
Khanderi, J. P. ;
Tempel, H. ;
Popp, A. ;
Engstler, J. ;
Schneider, J. J. ;
Sarapulova, A. ;
Mikhailova, D. ;
Schmitt, L. A. ;
Oswald, S. ;
Ehrenberg, H. .
CHEMICAL SOCIETY REVIEWS, 2012, 41 (15) :5068-5080
[9]   Enhanced electrochemical performance of LiMnPO4 by Li+-conductive Li3VO4 surface coatings [J].
Dong, Youzhong ;
Zhao, Yanming ;
Duan, He ;
Liang, Zhiyong .
ELECTROCHIMICA ACTA, 2014, 132 :244-250
[10]   Effect of Zn doping on the performance of LiMnPO4 cathode for lithium ion batteries [J].
Fang, Haisheng ;
Yi, Huihua ;
Hu, Chenglin ;
Yang, Bin ;
Yao, Yaochun ;
Ma, Wenhui ;
Dai, Yongnian .
ELECTROCHIMICA ACTA, 2012, 71 :266-269