Self-Assembled Plasmonic Nanoring Cavity Arrays for SERS and LSPR Biosensing

被引:254
作者
Im, Hyungsoon [1 ]
Bantz, Kyle C. [2 ]
Lee, Si Hoon [3 ]
Johnson, Timothy W. [1 ]
Haynes, Christy L. [2 ]
Oh, Sang-Hyun [1 ,3 ,4 ]
机构
[1] Univ Minnesota, Dept Elect & Comp Engn, Minneapolis, MN 55455 USA
[2] Univ Minnesota, Dept Chem, Minneapolis, MN 55455 USA
[3] Univ Minnesota, Dept Biomed Engn, Minneapolis, MN 55455 USA
[4] Seoul Natl Univ, Dept Biophys & Chem Biol, Seoul 151747, South Korea
关键词
surface-enhanced Raman scattering (SERS); localized surface plasmon resonance (LSPR); nanogap; nanosphere lithography; atomic layer deposition; adenine; ENHANCED RAMAN-SCATTERING; ADENOSINE-TRIPHOSPHATE; ANTHRAX BIOMARKER; IN-VIVO; SPECTROSCOPY; GAPS; IDENTIFICATION; ORIENTATION; TOOL;
D O I
10.1002/adma.201204283
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Self-assembled plasmonic nanoring cavity arrays are formed alongside the curvature of highly packed metallic nanosphere gratings. The sub-10-nm gap size is precisely tuned via atomic layer deposition and highly ordered arrays are produced over a cm-sized area. The resulting hybrid nanostructure boosts coupling efficiency of light into plasmons, and shows an improved SERS detection limit. These substrates are used for SERS detection of the biological analyte, adenine, followed by concurrent localized surface plasmon resonance sensing. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
引用
收藏
页码:2678 / 2685
页数:8
相关论文
共 48 条
[21]   Surface-enhanced Raman scattering and biophysics [J].
Kneipp, K ;
Kneipp, H ;
Itzkan, I ;
Dasari, RR ;
Feld, MS .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2002, 14 (18) :R597-R624
[22]   Self-Assembled Plasmonic Nanohole Arrays [J].
Lee, Si Hoon ;
Bantz, Kyle C. ;
Lindquist, Nathan C. ;
Oh, Sang-Hyun ;
Haynes, Christy L. .
LANGMUIR, 2009, 25 (23) :13685-13693
[23]   Detection of Adenosine Triphosphate with an Aptamer Biosensor Based on Surface-Enhanced Raman Scattering [J].
Li, Ming ;
Zhang, Jianming ;
Suri, Savan ;
Sooter, Letha J. ;
Ma, Dongling ;
Wu, Nianqiang .
ANALYTICAL CHEMISTRY, 2012, 84 (06) :2837-2842
[24]   Shell Thickness-Dependent Raman Enhancement for Rapid Identification and Detection of Pesticide Residues at Fruit Peels [J].
Liu, Bianhua ;
Han, Guangmei ;
Zhang, Zhongping ;
Liu, Renyong ;
Jiang, Changlong ;
Wang, Suhua ;
Han, Ming-Yong .
ANALYTICAL CHEMISTRY, 2012, 84 (01) :255-261
[25]   Wafer-Scale Surface-Enhanced Raman Scattering Substrates with Highly Reproducible Enhancement [J].
Liu, Xuefeng ;
Sun, Chih-Hung ;
Linn, Nicholas C. ;
Jiang, Bin ;
Jiang, Peng .
JOURNAL OF PHYSICAL CHEMISTRY C, 2009, 113 (33) :14804-14811
[26]   High-density silver nanoparticle film with temperature-controllable interparticle spacing for a tunable surface enhanced Raman scattering substrate [J].
Lu, Y ;
Liu, GL ;
Lee, LP .
NANO LETTERS, 2005, 5 (01) :5-9
[27]   In Vivo, Transcutaneous Glucose Sensing Using Surface-Enhanced Spatially Offset Raman Spectroscopy: Multiple Rats, Improved Hypoglycemic Accuracy, Low Incident Power, and Continuous Monitoring for Greater than 17 Days [J].
Ma, Ke ;
Yuen, Jonathan M. ;
Shah, Nilam C. ;
Walsh, Joseph T., Jr. ;
Glucksberg, Matthew R. ;
Van Duyne, Richard P. .
ANALYTICAL CHEMISTRY, 2011, 83 (23) :9146-9152
[28]   Wavelength-scanned surface-enhanced Raman excitation spectroscopy [J].
McFarland, AD ;
Young, MA ;
Dieringer, JA ;
Van Duyne, RP .
JOURNAL OF PHYSICAL CHEMISTRY B, 2005, 109 (22) :11279-11285
[29]   Modeling the Effect of Small Gaps in Surface-Enhanced Raman Spectroscopy [J].
McMahon, Jeffrey M. ;
Li, Shuzhou ;
Ausman, Logan K. ;
Schatz, George C. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2012, 116 (02) :1627-1637
[30]   Fundamental behavior of electric field enhancements in the gaps between closely spaced nanostructures [J].
McMahon, Jeffrey M. ;
Gray, Stephen K. ;
Schatz, George C. .
PHYSICAL REVIEW B, 2011, 83 (11)