Self-Assembled Plasmonic Nanoring Cavity Arrays for SERS and LSPR Biosensing

被引:254
作者
Im, Hyungsoon [1 ]
Bantz, Kyle C. [2 ]
Lee, Si Hoon [3 ]
Johnson, Timothy W. [1 ]
Haynes, Christy L. [2 ]
Oh, Sang-Hyun [1 ,3 ,4 ]
机构
[1] Univ Minnesota, Dept Elect & Comp Engn, Minneapolis, MN 55455 USA
[2] Univ Minnesota, Dept Chem, Minneapolis, MN 55455 USA
[3] Univ Minnesota, Dept Biomed Engn, Minneapolis, MN 55455 USA
[4] Seoul Natl Univ, Dept Biophys & Chem Biol, Seoul 151747, South Korea
关键词
surface-enhanced Raman scattering (SERS); localized surface plasmon resonance (LSPR); nanogap; nanosphere lithography; atomic layer deposition; adenine; ENHANCED RAMAN-SCATTERING; ADENOSINE-TRIPHOSPHATE; ANTHRAX BIOMARKER; IN-VIVO; SPECTROSCOPY; GAPS; IDENTIFICATION; ORIENTATION; TOOL;
D O I
10.1002/adma.201204283
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Self-assembled plasmonic nanoring cavity arrays are formed alongside the curvature of highly packed metallic nanosphere gratings. The sub-10-nm gap size is precisely tuned via atomic layer deposition and highly ordered arrays are produced over a cm-sized area. The resulting hybrid nanostructure boosts coupling efficiency of light into plasmons, and shows an improved SERS detection limit. These substrates are used for SERS detection of the biological analyte, adenine, followed by concurrent localized surface plasmon resonance sensing. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
引用
收藏
页码:2678 / 2685
页数:8
相关论文
共 48 条
[1]   Surface-Enhanced Resonance Raman Scattering on Gold Concentric Rings: Polarization Dependence and Intensity Fluctuations [J].
Andrade, Gustavo F. S. ;
Min, Qiao ;
Gordon, Reuven ;
Brolo, Alexandre G. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2012, 116 (04) :2672-2676
[2]   Gold films deposited over regular arrays of polystyrene nanospheres as highly effective SERS substrates from visible to NIR [J].
Baia, L. ;
Baia, M. ;
Popp, J. ;
Astilean, S. .
JOURNAL OF PHYSICAL CHEMISTRY B, 2006, 110 (47) :23982-23986
[3]   Recent progress in SERS biosensing [J].
Bantz, Kyle C. ;
Meyer, Audrey F. ;
Wittenberg, Nathan J. ;
Im, Hyungsoon ;
Kurtulus, Ozge ;
Lee, Si Hoon ;
Lindquist, Nathan C. ;
Oh, Sang-Hyun ;
Haynes, Christy L. .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2011, 13 (24) :11551-11567
[4]   Label-Free Detection of DNA Hybridization Using Surface Enhanced Raman Spectroscopy [J].
Barhoumi, Aoune ;
Halas, Naomi J. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2010, 132 (37) :12792-12793
[5]   Silver Nanocrescents with Infrared Plasmonic Properties As Tunable Substrates for Surface Enhanced Infrared Absorption Spectroscopy [J].
Bukasov, Rostislav ;
Shumaker-Parry, Jennifer S. .
ANALYTICAL CHEMISTRY, 2009, 81 (11) :4531-4535
[6]   Self-Assembled Large Au Nanoparticle Arrays with Regular Hot Spots for SERS [J].
Chen, Aiqing ;
DePrince, A. Eugene, III ;
Demortiere, Arnaud ;
Joshi-Imre, Alexandra ;
Shevchenko, Elena V. ;
Gray, Stephen K. ;
Welp, Ulrich ;
Vlasko-Vlasov, Vitalii K. .
SMALL, 2011, 7 (16) :2365-2371
[7]   SURFACE-ENHANCED RAMAN-SCATTERING OF ADENOSINE-TRIPHOSPHATE MOLECULES [J].
CHEN, TT ;
KUO, CS ;
CHOU, YC ;
LIANG, NT .
LANGMUIR, 1989, 5 (04) :887-891
[8]   Ultrahigh-Density Array of Silver Nanoclusters for SERS Substrate with High Sensitivity and Excellent Reproducibility [J].
Cho, Won Joon ;
Kim, Youngsuk ;
Kim, Jin Kon .
ACS NANO, 2012, 6 (01) :249-255
[9]   Electrochemical Control of the Time-Dependent Intensity Fluctuations in Surface-Enhanced Raman Scattering (SERS) [J].
dos Santos, Diego P. ;
Andrade, Gustavo F. S. ;
Temperini, Marcia L. A. ;
Brolo, Alexandre G. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2009, 113 (41) :17737-17744
[10]   Measurement of the distribution of site enhancements in surface-enhanced Raman scattering [J].
Fang, Ying ;
Seong, Nak-Hyun ;
Dlott, Dana D. .
SCIENCE, 2008, 321 (5887) :388-392