A class of cross-validatory model selection criteria

被引:4
作者
Yanagihara, Hirokazu [1 ]
Yuan, Ke-Hai [2 ]
Fujisawa, Hironori [3 ]
Hayashi, Kentaro [4 ]
机构
[1] Hiroshima Univ, Dept Math, Grad Sch Sci, Higashihiroshima 7398526, Japan
[2] Univ Notre Dame, Dept Psychol, Notre Dame, IN 46556 USA
[3] Inst Stat Math, Dept Math Anal & Stat Inference, Tachikawa, Tokyo 1908562, Japan
[4] Univ Hawaii Manoa, Dept Psychol, Honolulu, HI 96822 USA
关键词
asymptotic expansion; bias correction; cross-validation criterion; model misspecification; model selection; predictive discrepancy; sample discrepancy function; structural equation model; INFORMATION; LIKELIHOOD; SKEWNESS; ROBUST; CHOICE;
D O I
10.32917/hmj/1372180510
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we define a class of cross-validatory model selection criteria as an estimator of the predictive risk function based on a discrepancy between a candidate model and the true model. For a vector of unknown parameters, n estimators are required for the definition of the class, where n is the sample size. The ith estimator (i = 1,..., n) is obtained by minimizing a weighted discrepancy function in which the ith observation has a weight of 1 - lambda and others have weight of 1. Cross-validatory model selection criteria in the class are specified by the individual lambda. The sample discrepancy function and the ordinary cross-validation (CV) criterion are special cases of the class. One may choose lambda to minimize the biases. The optimal lambda makes the bias-corrected CV (CCV) criterion a second-order unbiased estimator for the risk function, while the ordinary CV criterion is a first-order unbiased estimator of the risk function.
引用
收藏
页码:149 / 177
页数:29
相关论文
共 32 条
[1]   FACTOR-ANALYSIS AND AIC [J].
AKAIKE, H .
PSYCHOMETRIKA, 1987, 52 (03) :317-332
[2]   NEW LOOK AT STATISTICAL-MODEL IDENTIFICATION [J].
AKAIKE, H .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1974, AC19 (06) :716-723
[3]  
Akaike H., 1973, 2 INT S INFORM THEOR, P267
[4]  
[Anonymous], BEHAVIORMETRIKA
[5]  
[Anonymous], THEORY POINT ESTIMAT
[6]   FACTORS INFLUENCING CROSS-VALIDATION OF CONFIRMATORY FACTOR-ANALYSIS MODELS [J].
BANDALOS, DL .
MULTIVARIATE BEHAVIORAL RESEARCH, 1993, 28 (03) :351-374
[7]   Robust and efficient estimation by minimising a density power divergence [J].
Basu, A ;
Harris, IR ;
Hjort, NL ;
Jones, MC .
BIOMETRIKA, 1998, 85 (03) :549-559
[9]   SINGLE SAMPLE CROSS-VALIDATION INDEXES FOR COVARIANCE-STRUCTURES [J].
BROWNE, MW ;
CUDECK, R .
MULTIVARIATE BEHAVIORAL RESEARCH, 1989, 24 (04) :445-455
[10]   CROSS-VALIDATION OF COVARIANCE-STRUCTURES [J].
CUDECK, R ;
BROWNE, MW .
MULTIVARIATE BEHAVIORAL RESEARCH, 1983, 18 (02) :147-168