GOLOD-SHAFAREVICH GROUPS WITH PROPERTY (T) AND KAC-MOODY GROUPS

被引:28
作者
Ershov, Mikhail [1 ]
机构
[1] Univ Virginia, Dept Math, Charlottesville, VA 22904 USA
基金
美国国家科学基金会;
关键词
D O I
10.1215/00127094-2008-053
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We construct Golod-Shafarevich groups with property (T) and thus provide counterexamples to a conjecture stated in a recent article of Zelmanov [Z2]. Explicit examples of such groups are given by lattices in certain topological Kac-Moody groups over finite fields. We provide several applications of this result, including examples of residually finite torsion nonamenable groups.
引用
收藏
页码:309 / 339
页数:31
相关论文
共 40 条
[1]   Presentation by amalgamation of certain twin BN-pairs [J].
Abramenko, P ;
Muhlherr, B .
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1997, 325 (07) :701-706
[2]  
Abramenko P., 2004, LONDON MATH SOC LECT, V311, P21
[3]  
[Anonymous], 2002, ASTERISQUE
[4]  
[Anonymous], 2008, NEW MATH MONOGR
[5]  
[Anonymous], 1972, GRAD TEXTS MATH
[6]  
[Anonymous], 1985, MATH HERITAGE ELIE C
[7]   On 2-spherical Kac-Moody groups and their central extensions [J].
Caprace, Pierre-Emmanuel .
FORUM MATHEMATICUM, 2007, 19 (05) :763-781
[8]   Existence of lattices in Kac-Moody groups over finite fields [J].
Carbone, L ;
Garland, H .
COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2003, 5 (05) :813-867
[9]   Abstract simplicity of complete Kac-Moody groups over finite fields [J].
Carbone, Lisa ;
Ershov, Mikhail ;
Ritter, Gordon .
JOURNAL OF PURE AND APPLIED ALGEBRA, 2008, 212 (10) :2147-2162
[10]  
De la Harpe P, 2002, GEOMETRIAE DEDICATA, V95, P1