Prediction of forest canopy fuel parameters in managed boreal forests using multispectral and unispectral airborne laser scanning data and aerial images

被引:12
作者
Maltamo, M. [1 ]
Raty, J. [2 ]
Korhonen, L. [1 ]
Kotivuori, E. [1 ]
Kukkonen, M. [1 ]
Peltola, H. [1 ]
Kangas, J. [1 ]
Packalen, P. [1 ]
机构
[1] Univ Eastern Finland, Sch Forest Sci, Joensuu 80101, Finland
[2] Norwegian Inst Bioecon Res NIBIO, Natl Forest Inventory, Div Forest & Forest Resources, As, Norway
基金
芬兰科学院;
关键词
Forest fire; forest structure; boreal forests; fuel models; forest fuel parameters; LiDAR; DISCRETE-RETURN; BIOMASS EQUATIONS; NORWAY SPRUCE; CROWN BASE; SCOTS PINE; LIDAR DATA; HEIGHT; MODELS; TREES; INTENSITY;
D O I
10.1080/22797254.2020.1816142
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
This study evaluated the suitability of different airborne laser scanning (ALS) datasets for the prediction of forest canopy fuel parameters in managed boreal forests in Finland. The ALS data alternatives were leaf-off and leaf-on unispectral and leaf-on multispectral data, alone and combined with aerial images. Canopy fuel weight, canopy base height, biomass of living and dead trees, and height and biomass of the understory tree layer were predicted using regression analysis. The considered categorical forest parameters were dominant tree species, site fertility and vertical forest structure layers. The canopy fuel weight was modeled based on crown biomass with an RMSE% value of 20-30%. The canopy base heights were predicted separately for pine and spruce stands with satisfactory results the RMSE% values being 9-10% and 15-17%, respectively. Following the initial classification of the existence of an understory layer (with kappa-values of 0.47-0.53), the prediction of understory height performed well (RMSE% 20-25%) but the understory biomass was predicted with larger RMSE% values (about 60-70%). Site fertility was classified with kappa-values of 0.5-0.6. The most accurate results were obtained using multispectral ALS data, although the differences between the datasets were minor.
引用
收藏
页码:245 / 257
页数:13
相关论文
共 57 条
[1]   Estimating forest canopy fuel parameters using LIDAR data [J].
Andersen, HE ;
McGaughey, RJ ;
Reutebuch, SE .
REMOTE SENSING OF ENVIRONMENT, 2005, 94 (04) :441-449
[2]   Fire models and methods to map fuel types: The role of remote sensing [J].
Arroyo, Lara A. ;
Pascual, Cristina ;
Manzanera, Jose A. .
FOREST ECOLOGY AND MANAGEMENT, 2008, 256 (06) :1239-1252
[3]  
AXELSSON A, 2018, REMOTE SENS BASEL, V10
[4]  
Axelsson P., 2000, Int. Arch. Photogramm. Remote Sens., V33 (Part B3), P85
[5]   Quantifying post-fire fallen trees using multi-temporal lidar [J].
Bohlin, Inka ;
Olsson, Hakan ;
Bohlin, Jonas ;
Granstrom, Anders .
INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2017, 63 :186-195
[6]  
Budei BC, 2018, REMOTE SENS ENVIRON, V204, P632, DOI [10.1016/j.rse.2017.09.037, 10.1016]
[7]  
CAJANDER A. K., 1926, ADA FORESTALIA FENNICA, V29, P1
[8]   Stochastic gradient boosting classification trees for forest fuel types mapping through airborne laser scanning and IRS LISS-III imagery [J].
Chirici, G. ;
Scotti, R. ;
Montaghi, A. ;
Barbati, A. ;
Cartisano, R. ;
Lopez, G. ;
Marchetti, M. ;
McRoberts, R. E. ;
Olsson, H. ;
Corona, P. .
INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2013, 25 :87-97
[9]   Predicting Selected Forest Stand Characteristics with Multispectral ALS Data [J].
Dalponte, Michele ;
Ene, Liviu Theodor ;
Gobakken, Terje ;
Naesset, Erik ;
Gianelle, Damiano .
REMOTE SENSING, 2018, 10 (04)
[10]   Measuring heights to crown base and crown median with LiDAR in a mature, even-aged loblolly pine stand [J].
Dean, Thomas J. ;
Cao, Quang V. ;
Roberts, Scott D. ;
Evans, David L. .
FOREST ECOLOGY AND MANAGEMENT, 2009, 257 (01) :126-133