Identities for degenerate Bernoulli polynomials and Korobov polynomials of the first kind

被引:22
作者
Kim, Taekyun [1 ]
Kim, Dae San [2 ]
机构
[1] Kwangwoon Univ, Dept Math, Seoul 139701, South Korea
[2] Sogang Univ, Dept Math, Seoul 121742, South Korea
关键词
generalized Pascal functional matrix; Wronskian matrix; degenerate Bernoulli polynomial; Krobov polynomial of the first kind;
D O I
10.1007/s11425-018-9338-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we derive five basic identities for Sheffer polynomials by using generalized Pascal functional and Wronskian matrices. Then we apply twelve basic identities for Sheffer polynomials, seven from previous results, to degenerate Bernoulli polynomials and Korobov polynomials of the first kind and get some new identities. In addition, letting lambda -> 0 in such identities gives us those for Bernoulli polynomials and Bernoulli polynomials of the second kind.
引用
收藏
页码:999 / 1028
页数:30
相关论文
共 8 条
[1]  
[Anonymous], 1984, PURE APPL MATH
[2]  
Carlitz L., 1956, Arch. Math., V7, P28, DOI [10.1007/BF01900520, DOI 10.1007/BF01900520]
[3]  
Carlitz L., 1979, Util. Math., V15, P51
[4]   A matrix approach to some identities involving Sheffer polynomial sequences [J].
Kim, Dae San ;
Kim, Taekyun .
APPLIED MATHEMATICS AND COMPUTATION, 2015, 253 :83-101
[5]  
Korobov N. M., 2001, CHEBYSHEVSKII SB, V1, P40
[6]  
Korobov N M, 1996, DIOPHANTINE APPROXIM, P77
[8]  
Youn H, 2011, ISRN DISCRETE MATH, V16