Offline Arabic Handwritten Text Recognition: A Survey

被引:99
作者
Parvez, Mohammad Tanvir [1 ]
Mahmoud, Sabri A. [2 ]
机构
[1] Qassim Univ, Dept Comp Engn, Qasim 51477, Saudi Arabia
[2] King Fahd Univ Petr & Minerals, Informat & Comp Sci Dept, Dhahran 31261, Saudi Arabia
关键词
Algorithms; Experimentation; Performance; Handwriting recognition; Arabic text recognition; optical character recognition; features; classifiers; VOCABULARY OCR; SEGMENTATION; CHARACTER; SYSTEM; FEATURES; CLASSIFIERS; OMNIFONT; WORDS; COMBINATION; ALGORITHM;
D O I
10.1145/2431211.2431222
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Research in offline Arabic handwriting recognition has increased considerably in the past few years. This is evident from the numerous research results published recently in major journals and conferences in the area of handwriting recognition. Features and classifications techniques utilized in recent research work have diversified noticeably compared to the past. Moreover, more efforts have been diverted, in last few years, to construct different databases for Arabic handwriting recognition. This article provides a comprehensive survey of recent developments in Arabic handwriting recognition. The article starts with a summary of the characteristics of Arabic text, followed by a general model for an Arabic text recognition system. Then the used databases for Arabic text recognition are discussed. Research works on preprocessing phase, like text representation, baseline detection, line, word, character, and subcharacter segmentation algorithms, are presented. Different feature extraction techniques used in Arabic handwriting recognition are identified and discussed. Different classification approaches, like HMM, ANN, SVM, k-NN, syntactical methods, etc., are discussed in the context of Arabic handwriting recognition. Works on Arabic lexicon construction and spell checking are presented in the postprocessing phase. Several summary tables of published research work are provided for used Arabic text databases and reported results on Arabic character, word, numerals, and text recognition. These tables summarize the features, classifiers, data, and reported recognition accuracy for each technique. Finally, we discuss some future research directions in Arabic handwriting recognition.
引用
收藏
页数:35
相关论文
共 177 条
[31]   Knowledge-based baseline detection and optimal thresholding for words segmentation in efficient pre-processing of handwritten arabic text [J].
AlKhateeb, Jawad H. ;
Ren, Jinchang ;
Ipson, Stan S. ;
Jiang, Jianmin .
PROCEEDINGS OF THE FIFTH INTERNATIONAL CONFERENCE ON INFORMATION TECHNOLOGY: NEW GENERATIONS, 2008, :1158-1159
[32]   Off-line recognition of handwritten Arabic words using multiple hidden Markov models [J].
Alma'adeed, S ;
Higgins, C ;
Elliman, D .
KNOWLEDGE-BASED SYSTEMS, 2004, 17 (2-4) :75-79
[33]  
ALMA'ADEED S., 2002, P 16 INT C PATT REC
[34]  
ALMA'ADEED S., 2006, P IEEE C GEOM MOD IM
[35]   A METHOD OF RECOGNITION OF ARABIC CURSIVE HANDWRITING [J].
ALMUALLIM, H ;
YAMAGUCHI, S .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1987, 9 (05) :715-722
[36]   Recognition of hand-printed characters based on structural description and inductive logic programming [J].
Amin, A .
PATTERN RECOGNITION LETTERS, 2003, 24 (16) :3187-3196
[37]  
Amor N.Ben., 2006, Proceedings of the 5th WSEAS International Conference on Artificial Intelligence, Knowledge Engineering and Data Bases, P194
[38]  
[Anonymous], P 11 INT C FRONT HAN
[39]  
[Anonymous], P 10 INT WORKSH FRON
[40]  
[Anonymous], 2008, Advances in neural information processing systems, DOI DOI 10.1007/978-1-4471-4072-6_12