SEMI-SUPERVISED AND UNSUPERVISED NOVELTY DETECTION USING NESTED SUPPORT VECTOR MACHINES

被引:2
作者
de Morsier, Frank [1 ]
Borgeaud, Maurice
Kuechler, Christoph
Gass, Volker
Thiran, Jean-Philippe [1 ]
机构
[1] Ecole Polytech Fed Lausanne, LTS 5, CH-1015 Lausanne, Switzerland
来源
2012 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS) | 2012年
关键词
Novelty detection; Semi-Supervised; Solution Path; Nested SVM; Low Density Criterion;
D O I
10.1109/IGARSS.2012.6351935
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Very often in change detection only few labels or even none are available. In order to perform change detection in these extreme scenarios, they can be considered as novelty detection problems, semi-supervised (SSND) if some labels are available otherwise unsupervised (UND). SSND can be seen as an unbalanced classification between labeled and unlabeled samples using the Cost-Sensitive Support Vector Machine (CS-SVM). UND assumes novelties in low density regions and can be approached using the One-Class SVM (OC-SVM). We propose here to use nested entire solution path algorithms for the OC-SVM and CS-SVM in order to accelerate the parameter selection and alleviate the dependency to labeled "changed" samples. Experiments are performed on two multitemporal change detection datasets (flood and fire detection) and the performance of the two methods proposed compared.
引用
收藏
页码:7337 / 7340
页数:4
相关论文
共 10 条
  • [1] [Anonymous], 2009, Kernel methods for remote sensing data analysis
  • [2] [Anonymous], 2009, Introduction to semi-supervised learning
  • [3] A support vector method for anomaly detection in hyperspectral imagery
    Banerjee, Amit
    Burlina, Philippe
    Diehl, Chris
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2006, 44 (08): : 2282 - 2291
  • [4] Blanchard G, 2010, J MACH LEARN RES, V11, P2973
  • [5] A support vector domain method for change detection in multitemporal images
    Bovolo, F.
    Camps-Valls, G.
    Bruzzone, L.
    [J]. PATTERN RECOGNITION LETTERS, 2010, 31 (10) : 1148 - 1154
  • [6] Nested Support Vector Machines
    Lee, Gyemin
    Scott, Clayton
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2010, 58 (03) : 1648 - 1660
  • [7] Multi-Modal Change Detection, Application to the Detection of Flooded Areas: Outcome of the 2009-2010 Data Fusion Contest
    Longbotham, Nathan
    Pacifici, Fabio
    Glenn, Taylor
    Zare, Alina
    Volpi, Michele
    Tuia, Devis
    Christophe, Emmanuel
    Michel, Julien
    Inglada, Jordi
    Chanussot, Jocelyn
    Du, Qian
    [J]. IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2012, 5 (01) : 331 - 342
  • [8] Semisupervised One-Class Support Vector Machines for Classification of Remote Sensing Data
    Munoz-Mari, Jordi
    Bovolo, Francesca
    Gomez-Chova, Luis
    Bruzzone, Lorenzo
    Camps-Valls, Gustavo
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2010, 48 (08): : 3188 - 3197
  • [9] Scott C. D., 2007, STAT SIGN PROC 2007, P234
  • [10] A path algorithm for the support vector domain description and its application to medical imaging
    Sjostrand, Karl
    Hansen, Michael Sass
    Larsson, Henrik B.
    Larsen, Rasmus
    [J]. MEDICAL IMAGE ANALYSIS, 2007, 11 (05) : 417 - 428