A Wideband Triboelectric Energy Harvester

被引:8
作者
Dhakar, Lokesh [1 ,2 ]
Liu, Huicong [1 ,3 ]
Tay, F. E. H. [2 ,4 ]
Lee, Chengkuo [1 ]
机构
[1] Natl Univ Singapore, Dept Elect & Comp Engn, Singapore 117548, Singapore
[2] NUS Grad Sch Integrat Sci & Engn, Singapore, Singapore
[3] Soochow Univ, Robot & Microsyst Ctr, Suzhou, Peoples R China
[4] Natl Univ Singapore, Dept Mech Engn, Singapore, Singapore
来源
13TH INTERNATIONAL CONFERENCE ON MICRO AND NANOTECHNOLOGY FOR POWER GENERATION AND ENERGY CONVERSION APPLICATIONS (POWERMEMS 2013) | 2013年 / 476卷
基金
新加坡国家研究基金会;
关键词
D O I
10.1088/1742-6596/476/1/012128
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Contact electrification or triboelectric charging has mostly been seen as a negative phenomenon in various engineering applications. In electronic applications, static charge buildup may even destroy some of the components. In this paper, we demonstrate a cantilever based design using triboelectric charging mechanism for energy harvesting applications. The voltage output of triboelectric energy harvester (TEH) continuously increases with increased mass applied force and proof mass loading on the cantilever. The voltage output increases from 0.4V to 1.8V as the excitation acceleration increases from 0.4g to 1.8g. The design has been shown to demonstrate wide bandwidth characteristics. The FWHM increases from 3.76 to 12.64 Hz as the acceleration increases from 0.4g to 1.8g. The peak power output is found to be 0.18 mu W at 1.4g.
引用
收藏
页数:5
相关论文
共 11 条
[1]   Integrated Multi layered Triboelectric Nanogenerator for Harvesting Biomechanical Energy from Human Motions [J].
Bai, Peng ;
Zhu, Guang ;
Lin, Zong-Hong ;
Jing, Qingshen ;
Chen, Jun ;
Zhang, Gong ;
Ma, Jusheng ;
Wang, Zhong Lin .
ACS NANO, 2013, 7 (04) :3713-3719
[2]   Energy harvesting vibration sources for microsystems applications [J].
Beeby, S. P. ;
Tudor, M. J. ;
White, N. M. .
MEASUREMENT SCIENCE AND TECHNOLOGY, 2006, 17 (12) :R175-R195
[3]   Flexible triboelectric generator! [J].
Fan, Feng-Ru ;
Tian, Zhong-Qun ;
Wang, Zhong Lin .
NANO ENERGY, 2012, 1 (02) :328-334
[4]   TRIBOELECTRICITY IN POLYMERS [J].
HENNIKER, J .
NATURE, 1962, 196 (4853) :474-&
[5]   Feasibility study of a 3D vibration-driven electromagnetic MEMS energy harvester with multiple vibration modes [J].
Liu, Huicong ;
Soon, Bo Woon ;
Wang, Nan ;
Tay, C. J. ;
Quan, Chenggen ;
Lee, Chengkuo .
JOURNAL OF MICROMECHANICS AND MICROENGINEERING, 2012, 22 (12)
[6]   Piezoelectric MEMS Energy Harvester for Low-Frequency Vibrations With Wideband Operation Range and Steadily Increased Output Power [J].
Liu, Huicong ;
Tay, Cho Jui ;
Quan, Chenggen ;
Kobayashi, Takeshi ;
Lee, Chengkuo .
JOURNAL OF MICROELECTROMECHANICAL SYSTEMS, 2011, 20 (05) :1131-1142
[7]   Vibration-to-electric energy conversion [J].
Meninger, S ;
Mur-Miranda, JO ;
Amirtharajah, R ;
Chandrakasan, AP ;
Lang, JH .
IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, 2001, 9 (01) :64-76
[8]  
Reilly E.K., 2009, POWERMEMS: International Workshop on Micro and Nanotechnology for Power Generation and Energy Conversion Applications, P312
[9]   A piezoelectric vibration based generator for wireless electronics [J].
Roundy, S ;
Wright, PK .
SMART MATERIALS & STRUCTURES, 2004, 13 (05) :1131-1142
[10]   A wideband vibration-based energy harvester [J].
Soliman, M. S. M. ;
Abdel-Rahman, E. M. ;
El-Saadany, E. F. ;
Mansour, R. R. .
JOURNAL OF MICROMECHANICS AND MICROENGINEERING, 2008, 18 (11)