The molecular basis of the insulin resistance of adipocytes and skeletal muscle during lactation has been investigated in sheep. The number of insulin receptors per adipocyte or per unit membrane protein for skeletal muscle is unchanged by lactation. The ability of insulin to stimulate autophosphorylation of its beta-subunit was enhanced in adipocytes but not in skeletal muscle during lactation. This increased autophosphorylation was due, at least in part, to enhanced tyrosine phosphorylation and was found when both solubilised, immunoprecipitated insulin receptors and intact adipocytes were incubated with insulin. The ability of the insulin receptor kinase to phosphorylate other proteins did not appear to be altered by lactation; this was shown with lectin-purified insulin receptors using the artificial substrate, polyglutamyl tyrosine, and in intact adipocytes. Lactation had no effect on the ability of insulin to activate two key downstream kinases, mitogen-activated protein kinase and phosphatidyl inositol-3-kinase in adipocytes. The study thus shows that the insulin resistance of lactation in sheep is due to changes downstream of the receptor in both adipocytes and skeletal muscle.