A Deep Learning Based Video Classification System Using Multimodality Correlation Approach

被引:0
作者
Lee, Jungheon [1 ]
Koh, Youngsan [1 ]
Yang, Jihoon [1 ]
机构
[1] Sogang Univ, Dept Comp Sci & Engn, Seoul 04107, South Korea
来源
2017 17TH INTERNATIONAL CONFERENCE ON CONTROL, AUTOMATION AND SYSTEMS (ICCAS) | 2017年
关键词
Machine Learning; Deep Learning; Multimodal Learning; Convolutional Neural Network; Video Classification;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we propose a video event classification system that classifies video events using the correlation of images and sounds extracted from one video. The proposed system has better classification performance than other systems using single modality.
引用
收藏
页码:2021 / 2025
页数:5
相关论文
共 10 条
  • [1] Andrew G., 2013, P 30 INT C INT C MAC, P1247
  • [2] [Anonymous], 2010, P 18 ACM INT C MULT
  • [3] Correlational Neural Networks
    Chandar, Sarath
    Khapra, Mitesh M.
    Larochelle, Hugo
    Ravindran, Balaraman
    [J]. NEURAL COMPUTATION, 2016, 28 (02) : 257 - 285
  • [4] Daume III H., 2012, COURSE MACHINE LEARN, P58
  • [5] LeCun Y., 1998, MNIST DATABASE HANDW
  • [6] Ensemble learning via negative correlation
    Liu, Y
    Yao, X
    [J]. NEURAL NETWORKS, 1999, 12 (10) : 1399 - 1404
  • [7] Ng JYH, 2015, PROC CVPR IEEE, P4694, DOI 10.1109/CVPR.2015.7299101
  • [8] Ngiam J., 2011, P 28 INT C MACH LEAR
  • [9] Rethinking the Inception Architecture for Computer Vision
    Szegedy, Christian
    Vanhoucke, Vincent
    Ioffe, Sergey
    Shlens, Jon
    Wojna, Zbigniew
    [J]. 2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, : 2818 - 2826
  • [10] Wang WR, 2015, PR MACH LEARN RES, V37, P1083