On the Unilateral Shift as a Hilbert Module over the Disc Algebra

被引:2
作者
Clouatre, Raphael [1 ]
机构
[1] Indiana Univ, Dept Math, Bloomington, IN 47405 USA
关键词
EXTENSIONS; PROJECTIVITY; COHOMOLOGY; OPERATOR;
D O I
10.1007/s11785-013-0302-x
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the unilateral shift (of arbitrary countable multiplicity) as a Hilbert module over the disc algebra and the associated extension groups. In relation with the problem of determining whether this module is projective, we consider a special class of extensions, which we call polynomial. We show that the subgroup of polynomial extensions of a contractive module by the adjoint of the unilateral shift is trivial. The main tool is a function theoretic decomposition of the Sz.-Nagy-Foias model space for completely non-unitary contractions.
引用
收藏
页码:283 / 309
页数:27
相关论文
共 18 条
[1]  
[Anonymous], 1989, PITMAN RES NOTES MAT
[2]  
Bercovici H., 1988, Mathematical Surveys and Monographs, V26
[3]  
Carlson J.F., 1994, New York J. Math, V1, P26
[4]  
Carlson JF, 1997, MICH MATH J, V44, P365
[5]   COHOMOLOGY AND EXTENSIONS OF HILBERT MODULES [J].
CARLSON, JF ;
CLARK, DN .
JOURNAL OF FUNCTIONAL ANALYSIS, 1995, 128 (02) :278-306
[6]  
Chen XM, 2000, J OPERAT THEOR, V43, P69
[7]   Projective modules and Hilbert spaces with a Nevanlinna-Pick kernel [J].
Clancy, RS ;
McCullough, S .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1998, 126 (11) :3299-3305
[8]  
Davidson KR, 1997, J REINE ANGEW MATH, V487, P153
[9]   Unitary extensions of Hilbert A(D)-modules split [J].
Didas, Michael ;
Eschmeier, Joerg .
JOURNAL OF FUNCTIONAL ANALYSIS, 2006, 238 (02) :565-577
[10]   Backward shift invariant operator ranges [J].
Ferguson, SH .
JOURNAL OF FUNCTIONAL ANALYSIS, 1997, 150 (02) :526-543