Geodesic stability and quasi normal modes via Lyapunov exponent for Hayward black hole

被引:9
作者
Mondal, Monimala [1 ]
Pradhan, Parthapratim [2 ]
Rahaman, Farook [1 ]
Karar, Indrani [3 ]
机构
[1] Jadavpur Univ, Dept Math, Kolkata 700032, W Bengal, India
[2] Hiralal Mazumdar Mem Coll Women, Dept Phys, Kolkata 700035, India
[3] Kalyani Univ, Dept Registrar, Nadia, W Bengal, India
关键词
Lyapunov exponent; quasi-normal modes; Schwarzschild black hole; geodesic stability; photon sphere; WKB APPROACH;
D O I
10.1142/S0217732320502491
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We derive proper time Lyapunov exponent (lambda(p)) and coordinate time Lyapunov exponent (lambda(c)) for a regular Hayward class of black hole. The proper time corresponds to tau and the coordinate time corresponds to t, where t is measured by the asymptotic observers both for Hayward black hole and for special case of Schwarzschild black hole. We compute their ratio as lambda(p)/lambda(c) = (r(sigma)(3)+2l(2) m)/root(r(sigma)(2)+2l(2)m)(3) -3mr(sigma)(5) for time-like geodesics. In the limit of l = 0 that means for Schwarzschild black hole this ratio reduces to lambda(p)/lambda(c) = root r(sigma)/(r(sigma) -3m). Using Lyapunov exponent, we investigate the stability and instability of equatorial circular geodesics. By evaluating the Lyapunov exponent, which is the inverse of the instability time scale, we show that, in the eikonal limit, the real and imaginary parts of quasi-normal modes (QNMs) is specified by the frequency and instability time scale of the null circular geodesics. Furthermore, we discuss the unstable photon sphere and radius of shadow for this class of black hole.
引用
收藏
页数:18
相关论文
共 44 条
[1]   Rotating Hayward's regular black hole as particle accelerator [J].
Amir, Muhammed ;
Ghosh, Sushant G. .
JOURNAL OF HIGH ENERGY PHYSICS, 2015, (07)
[2]  
Angherlini F. R. T., 1963, NUOVO CIMENTO, V27, P636
[3]  
[Anonymous], 1954, On A Certain Property of the Differential Equations in A Problem on the Motion of A Heavy Rigid Body Having A Fixed Point
[4]   Mergers of nonspinning black-hole binaries: Gravitational radiation characteristics [J].
Baker, John G. ;
Boggs, William D. ;
Centrella, Joan ;
Kelly, Bernard J. ;
McWilliams, Sean T. ;
van Meter, James R. .
PHYSICAL REVIEW D, 2008, 78 (04)
[5]  
Bardeen J.M., 1968, P INT C GR5 TBIL USS, P174
[6]   Inspiral, merger, and ringdown of unequal mass black hole binaries: A multipolar analysis [J].
Berti, Emanuele ;
Cardoso, Vitor .
PHYSICAL REVIEW D, 2007, 76 (06)
[7]   CHAOS AROUND A BLACK-HOLE [J].
BOMBELLI, L ;
CALZETTA, E .
CLASSICAL AND QUANTUM GRAVITY, 1992, 9 (12) :2573-2599
[8]   Gravitational radiation in D-dimensional spacetimes -: art. no. 064026 [J].
Cardoso, V ;
Dias, OJC ;
Lemos, JPS .
PHYSICAL REVIEW D, 2003, 67 (06)
[9]   Geodesic stability, Lyapunov exponents, and quasinormal modes [J].
Cardoso, Vitor ;
Miranda, Alex S. ;
Berti, Emanuele ;
Witek, Helvi ;
Zanchin, Vilson T. .
PHYSICAL REVIEW D, 2009, 79 (06)
[10]  
Chandrasekhar S., 1998, The Mathematical Theory of Black Holes