UNIFORM BOUNDS FOR THE COMPLEMENTARY INCOMPLETE GAMMA FUNCTION

被引:24
作者
Borwein, Jonathan M. [1 ]
Chan, O-Yeat [2 ]
机构
[1] Dalhousie Univ, Fac Comp Sci, Halifax, NS B3H 1W5, Canada
[2] Dalhousie Univ, Dept Math & Stat, Halifax, NS B3H 1W5, Canada
来源
MATHEMATICAL INEQUALITIES & APPLICATIONS | 2009年 / 12卷 / 01期
关键词
Incomplete Gamma Function; Inequalities; Uniform Bounds; INEQUALITIES;
D O I
10.7153/mia-12-10
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove upper and lower bounds for the complementary incomplete gamma function Gamma(a, z) with complex parameters a and z. Our bounds are refined within the circular hyperboloid of one sheet {(a, z) : vertical bar z vertical bar > c vertical bar a - 1 vertical bar} with a real and z complex. Our results show that within the hyperboloid, vertical bar Gamma(a, z)vertical bar is of order vertical bar Z vertical bar(a-1)e(-Re(z)), and extends an upper estimate of Natalini and Palumbo to complex values of z.
引用
收藏
页码:115 / 121
页数:7
相关论文
共 10 条
[1]   On some inequalities for the incomplete gamma function [J].
Alzer, H .
MATHEMATICS OF COMPUTATION, 1997, 66 (218) :771-778
[2]  
BORWEIN D, EFFECTIVE LAGUERRE A
[3]  
GAUTSCHI W, 1997, TRICOMIS IDEAS CONT, P203
[4]  
Natalini P, 2000, MATH INEQUAL APPL, V3, P69
[5]   A uniform asymptotic expansion for the incomplete gamma function [J].
Paris, RB .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2002, 148 (02) :323-339
[6]  
Qi F, 2002, MATH INEQUAL APPL, V5, P61
[7]  
Temme N.M., 1996, Methods Appl. Anal., V3, P335
[8]  
TEMME NM, 1975, MATH COMPUT, V29, P1109, DOI 10.1090/S0025-5718-1975-0387674-2
[9]  
Tricomi F. G., 1950, Math. Z., V53, P136
[10]  
WATSON GN, 1922, TRESTISE THEORY BESS