Quality Control of Vertically Aligned Carbon Nanotubes Grown by Chemical Vapor Deposition

被引:8
作者
Yao, Yagang [1 ,2 ]
Li, Zhuo [2 ]
Wong, Ching-Ping [2 ,3 ]
机构
[1] Chinese Acad Sci, Suzhou Inst Nanotech & Nanobion, Suzhou 215123, Peoples R China
[2] Georgia Inst Technol, Sch Mat Sci & Engn, Atlanta, GA 30332 USA
[3] Chinese Univ Hong Kong, Dept Elect Engn, Hong Kong, Hong Kong, Peoples R China
来源
IEEE TRANSACTIONS ON COMPONENTS PACKAGING AND MANUFACTURING TECHNOLOGY | 2013年 / 3卷 / 11期
关键词
Chemical vapor deposition (CVD); high quality; low thermal resistance; vertically aligned carbon nanotubes (VACNTs);
D O I
10.1109/TCPMT.2013.2278174
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Vertically aligned carbon nanotube (VACNT) has been proposed as a promising material for electrical interconnection and heat dissipation, because of its high electrical and thermal conductivity. Defects and impurities in synthesized VACNT, however, lead to unsatisfactory performance in these applications. To improve the quality of VACNT, we systematically studied the effects of various growth parameters on the quality of VACNT, including growth temperature, the amount of water vapor, carbon source, and hydrogen gas. By tailoring these parameters, we successfully synthesized high-quality VACNTs that were confirmed by Raman spectroscopy and thermogravimetric analysis. These findings might be helpful for the applications of VACNT in many fields. VACNT-based thermal interface material was successfully made and a low thermal resistance of similar to 9.0 mm(2)KW(-1) suggests VACNTs' promising potentials in current demanding thermal management.
引用
收藏
页码:1804 / 1810
页数:7
相关论文
共 27 条
[11]   Chip cooling with integrated carbon nanotube microfin architectures [J].
Kordas, K. ;
Toth, G. ;
Moilanen, P. ;
Kumpumaki, M. ;
Vahakangas, J. ;
Uusimaki, A. ;
Vajtai, R. ;
Ajayan, P. M. .
APPLIED PHYSICS LETTERS, 2007, 90 (12)
[12]   Carbon nanotubes in interconnect applications [J].
Kreupl, F ;
Graham, AP ;
Duesberg, GS ;
Steinhögl, W ;
Liebau, M ;
Unger, E ;
Hönlein, W .
MICROELECTRONIC ENGINEERING, 2002, 64 (1-4) :399-408
[13]   Label-Free DNA Biosensors Based on Functionalized Carbon Nanotube Field Effect Transistors [J].
Martinez, Maria Teresa ;
Tseng, Yu-Chih ;
Ormategui, Nerea ;
Loinaz, Iraida ;
Eritja, Ramon ;
Bokor, Jeffrey .
NANO LETTERS, 2009, 9 (02) :530-536
[14]  
McNamara A., 2011, P ASME C
[15]   Electrical conductivity of pure carbon nanotube yarns [J].
Miao, Menghe .
CARBON, 2011, 49 (12) :3755-3761
[16]   Polarization dependent optical absorption properties of single-walled carbon nanotubes and methodology for the evaluation of their morphology [J].
Murakami, Y ;
Einarsson, E ;
Edamura, T ;
Maruyama, S .
CARBON, 2005, 43 (13) :2664-2676
[17]   Carbon nanotube-carbon nanotube contacts as an alternative towards low resistance horizontal interconnects [J].
Santini, Claudia A. ;
Volodin, Alexander ;
Van Haesendonck, Chris ;
De Gendt, Stefan ;
Groeseneken, Guido ;
Vereecken, Philippe M. .
CARBON, 2011, 49 (12) :4004-4012
[18]   Crystalline ropes of metallic carbon nanotubes [J].
Thess, A ;
Lee, R ;
Nikolaev, P ;
Dai, HJ ;
Petit, P ;
Robert, J ;
Xu, CH ;
Lee, YH ;
Kim, SG ;
Rinzler, AG ;
Colbert, DT ;
Scuseria, GE ;
Tomanek, D ;
Fischer, JE ;
Smalley, RE .
SCIENCE, 1996, 273 (5274) :483-487
[19]   Carbon-Nanotube Through-Silicon Via Interconnects for Three-Dimensional Integration [J].
Wang, Teng ;
Jeppson, Kejll ;
Ye, Lilei ;
Liu, Johan .
SMALL, 2011, 7 (16) :2313-2317
[20]   Enhancement of thermal interface materials with carbon nanotube arrays [J].
Xu, J ;
Fisher, TS .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2006, 49 (9-10) :1658-1666