Self-powered liquid triboelectric microfluidic sensor for pressure sensing and finger motion monitoring applications

被引:162
作者
Shi, Qiongfeng [1 ,2 ,3 ]
Wang, Hao [1 ,2 ,3 ]
Wang, Tao [1 ,2 ,3 ]
Lee, Chengkuo [1 ,2 ,3 ,4 ]
机构
[1] Natl Univ Singapore, Dept Elect & Comp Engn, 4 Engn Dr 3, Singapore 117576, Singapore
[2] Natl Univ Singapore, Ctr Sensors & MEMS, 4 Engn Dr 3, Singapore 117576, Singapore
[3] NUS Suzhou Res Inst NUSRI, Suzhou Ind Pk, Suzhou 215123, Peoples R China
[4] Natl Univ Singapore, NUS Grad Sch Integrat Sci & Engn, Singapore 117456, Singapore
基金
新加坡国家研究基金会;
关键词
Self-powered; Liquid triboelectric; Capacitive; Microfluidic; Pressure sensor; Finger motion; CONTACT-ELECTRIFICATION; ELECTRONIC SKIN; WAVE ENERGY; THIN-FILM; STRAIN SENSORS; NANOGENERATOR; WATER; SURFACE; SYSTEM; ARRAY;
D O I
10.1016/j.nanoen.2016.10.046
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Pressure sensors with flexibility are important functional components as the interface between the mechanical motion and electric signal in healthcare monitoring system. Conventional triboelectric based pressure sensors have advantages of simple structure configuration and self-powered sensing mechanism. However, the contact separation working principle requires macro-scale air gap and the performance is largely affected by the separation distance, which is not suitable for conformal human motion sensing. Hence in this paper, we report a flexible microfluidic pressure sensor based on liquid-solid interface triboelectrification when liquid flows in a microfluidic channel. The proposed microfluidic pressure sensor is able to have a conformal contact with human skin and no separation gap is required due to the microfluidic chamber and channel design. It is capable of working in two sensing mechanisms- triboelectric mechanism and capacitive mechanism. Triboelectric mechanism can be used to detect the dynamic pressure change on device without external power supply. Capacitive mechanism can be adopted as complementary sensing mechanism to detect both dynamic pressure change and static pressure. The proposed microfluidic pressure sensor can monitor both the magnitude and frequency of the pressure applied on the device simultaneously. Besides, the device can be integrated with microfluidic system as a self-powered flow rate sensor. Moreover, it can be conformally attached on human finger for finger bending degree and bending frequency detection. The proposed microfluidic pressure sensor offers more usage flexibility for flow rate, finger motion monitoring and the potentials for more complex human motion monitoring applications.
引用
收藏
页码:450 / 459
页数:10
相关论文
共 63 条
[1]   Membrane-Based Self-Powered Triboelectric Sensors for Pressure Change Detection and Its Uses in Security Surveillance and Healthcare Monitoring [J].
Bai, Peng ;
Zhu, Guang ;
Jing, Qingshen ;
Yang, Jin ;
Chen, Jun ;
Su, Yuanjie ;
Ma, Jusheng ;
Zhang, Gong ;
Wang, Zhong Lin .
ADVANCED FUNCTIONAL MATERIALS, 2014, 24 (37) :5807-5813
[2]  
Chen HT, 2016, PROC IEEE MICR ELECT, P1252, DOI 10.1109/MEMSYS.2016.7421865
[3]  
Chen L. Y., 2014, NAT COMMUN, V5
[4]   Energy harvesting model of moving water inside a tubular system and its application of a stick-type compact triboelectric nanogenerator [J].
Choi, Dongwhi ;
Lee, Sangmin ;
Park, Sang Min ;
Cho, Handong ;
Hwang, Woonbong ;
Kim, Dong Sung .
NANO RESEARCH, 2015, 8 (08) :2481-2491
[5]   High-performance triboelectric nanogenerators with artificially well-tailored interlocked interfaces [J].
Choi, Hak-Jong ;
Lee, Jeong Hwan ;
Jun, Junho ;
Kim, Tae Yun ;
Kim, Sang-Woo ;
Lee, Heon .
NANO ENERGY, 2016, 27 :595-601
[6]   Highly Stretchable Resistive Pressure Sensors Using a Conductive Elastomeric Composite on a Micropyramid Array [J].
Choong, Chwee-Lin ;
Shim, Mun-Bo ;
Lee, Byoung-Sun ;
Jeon, Sanghun ;
Ko, Dong-Su ;
Kang, Tae-Hyung ;
Bae, Jihyun ;
Lee, Sung Hoon ;
Byun, Kyung-Eun ;
Im, Jungkyun ;
Jeong, Yong Jin ;
Park, Chan Eon ;
Park, Jong-Jin ;
Chung, U-In .
ADVANCED MATERIALS, 2014, 26 (21) :3451-3458
[7]   Mesoporous pores impregnated with Au nanoparticles as effective dielectrics for enhancing triboelectric nanogenerator performance in harsh environments [J].
Chun, Jinsung ;
Kim, Jin Woong ;
Jung, Woo-suk ;
Kang, Chong-Yun ;
Kim, Sang-Woo ;
Wang, Zhong Lin ;
Baik, Jeong Min .
ENERGY & ENVIRONMENTAL SCIENCE, 2015, 8 (10) :3006-3012
[8]   An intelligent skin based self-powered finger motion sensor integrated with triboelectric nanogenerator [J].
Dhakar, Lokesh ;
Pitchappa, Prakash ;
Tay, Francis Eng Hock ;
Lee, Chengkuo .
NANO ENERGY, 2016, 19 :532-540
[9]   Transparent Triboelectric Nanogenerators and Self-Powered Pressure Sensors Based on Micropatterned Plastic Films [J].
Fan, Feng-Ru ;
Lin, Long ;
Zhu, Guang ;
Wu, Wenzhuo ;
Zhang, Rui ;
Wang, Zhong Lin .
NANO LETTERS, 2012, 12 (06) :3109-3114
[10]   A wearable and highly sensitive pressure sensor with ultrathin gold nanowires [J].
Gong, Shu ;
Schwalb, Willem ;
Wang, Yongwei ;
Chen, Yi ;
Tang, Yue ;
Si, Jye ;
Shirinzadeh, Bijan ;
Cheng, Wenlong .
NATURE COMMUNICATIONS, 2014, 5