Process parameter optimization for MIMO plastic injection molding via soft computing

被引:88
|
作者
Chen, Wen-Chin [2 ]
Fu, Gong-Loung [3 ,4 ]
Tai, Pei-Hao [3 ]
Deng, Wei-Jaw [1 ]
机构
[1] Chung Hua Univ, Grad Sch Business Adm, Hsinchu 30012, Taiwan
[2] Chung Hua Univ, Grad Sch Ind Engn & Syst Management, Hsinchu 30012, Taiwan
[3] Chung Hua Univ, Grad Inst Technol Management, Hsinchu 30012, Taiwan
[4] Minghsin Univ Sci & Technol, Dept Mech Engn, Hsinchu 30401, Taiwan
关键词
Plastic injection molding; Back-propagation neural networks; Taguchi's parameter designs; Genetic algorithms; Soft computing; NEURAL-NETWORK MODEL; THIN SHELL FEATURE; GENETIC ALGORITHM; WARPAGE OPTIMIZATION; INFORMATION CRITERION; OPTICAL-PERFORMANCE; FUZZY-LOGIC; MOLDED PART; SYSTEM; DESIGN;
D O I
10.1016/j.eswa.2007.10.020
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Determining optimal process parameter settings critically influences productivity, quality, and cost of production in the plastic injection molding (PIM) industry. Previously, production engineers used either trial-and-error method or Taguchi's parameter design method to determine optimal process parameter settings for PIM. However, these methods are unsuitable in present PIM because the increasing complexity of product design and the requirement of multi-response quality characteristics. This research presents an approach in a soft computing paradigm for the process parameter optimization of multiple-input multiple-output (MIMO) plastic injection molding process. The proposed approach integrates Taguchi's parameter design method, back-propagation neural networks, genetic algorithms and engineering optimization concepts to optimize the process parameters. The research results indicate that the proposed approach call effectively help engineers determine optimal process parameter settings and achieve competitive advantages of product quality and costs. (C) 2007 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1114 / 1122
页数:9
相关论文
共 50 条
  • [41] Fuzzy assessment of process parameter interactions on warpage defect modeling in plastic injection molding
    Otieno, Steven O.
    Mwema, Fredrick M.
    Mharakurwa, Edwell T.
    Jen, Tien-Chien
    INTERNATIONAL JOURNAL OF INTERACTIVE DESIGN AND MANUFACTURING - IJIDEM, 2024,
  • [42] Process parameters optimization using a novel classification model for plastic injection molding
    Zhang, Yun (marblezy@hust.edu.cn), 1600, Springer London (94): : 1 - 4
  • [43] Process parameters optimization using a novel classification model for plastic injection molding
    Huang Gao
    Yun Zhang
    Yang Fu
    Ting Mao
    Huamin Zhou
    Dequn Li
    The International Journal of Advanced Manufacturing Technology, 2018, 94 : 357 - 370
  • [44] Process parameters optimization using a novel classification model for plastic injection molding
    Gao, Huang
    Zhang, Yun
    Fu, Yang
    Mao, Ting
    Zhou, Huamin
    Li, Dequn
    INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2018, 94 (1-4): : 357 - 370
  • [45] Optimization of Process Parameters using DOE, RSM, and GA in Plastic Injection Molding
    Chen, W. C.
    Kurniawan, Denni
    Fu, G. L.
    ADVANCED MANUFACTURING TECHNOLOGY, PTS 1-4, 2012, 472-475 : 1220 - +
  • [47] Multiobjective optimization of injection molding parameters based on soft computing and variable complexity method
    Jin Cheng
    Zhenyu Liu
    Jianrong Tan
    The International Journal of Advanced Manufacturing Technology, 2013, 66 : 907 - 916
  • [48] Multiobjective optimization of injection molding parameters based on soft computing and variable complexity method
    Cheng, Jin
    Liu, Zhenyu
    Tan, Jianrong
    INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2013, 66 (5-8): : 907 - 916
  • [49] TOPOLOGY OPTIMIZATION OF PLASTIC PARTS FOR INJECTION MOLDING
    Oliver, Kathryn
    Anwar, Sohel
    Tovar, Andres
    PROCEEDINGS OF THE ASME INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION, 2019, VOL 14, 2020,
  • [50] Simulation Process of Injection Molding and Optimization for Automobile Instrument Parameter in Embedded System
    Ramesh, S.
    Nirmala, P.
    Ramkumar, G.
    Sahoo, Satyajeet
    Anitha, G.
    Gnanasekar, A. K.
    Isaac JoshuaRamesh Lalvani, J.
    ADVANCES IN MATERIALS SCIENCE AND ENGINEERING, 2021, 2021