Real spectral triples over noncommutative Bieberbach manifolds

被引:4
作者
Olczykowski, Piotr [1 ]
Sitarz, Andrzej [2 ,3 ]
机构
[1] Copernicus Ctr Interdisciplinary Studies, PL-31016 Krakow, Poland
[2] Jagiellonian Univ, Inst Phys, PL-30059 Krakow, Poland
[3] Polish Acad Sci, Inst Math, PL-00950 Warsaw, Poland
关键词
Noncommutative geometry; Spectral triple; Dirac operator;
D O I
10.1016/j.geomphys.2013.05.003
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We classify and construct all real spectral triples over noncommutative Bieberbach manifolds, which are restrictions of irreducible, real, equivariant spectral triples over the noncommutative three-torus. We show that, in the classical case, the constructed geometries correspond exactly to spin structures over Bieberbach manifolds and the Dirac operators constructed for a flat metric. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:91 / 103
页数:13
相关论文
共 9 条