Large deviations for 2-D stochastic Navier-Stokes equations driven by multiplicative Levy noises

被引:55
作者
Zhai, Jianliang [1 ]
Zhang, Tusheng [1 ,2 ]
机构
[1] Univ Sci & Technol China, Sch Math Sci, Hefei 230026, Peoples R China
[2] Univ Manchester, Sch Math, Manchester M13 9PL, Lancs, England
关键词
Brownian motions; large deviations; Poisson random measures; Skorohod representation; stochastic Navier-Stokes equations; tightness; PARTIAL-DIFFERENTIAL-EQUATIONS;
D O I
10.3150/14-BEJ647
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper, we establish a large deviation principle for two-dimensional stochastic Navier-Stokes equations driven by multiplicative Levy noises. The weak convergence method introduced by Budhiraja, Dupuis and Maroulas [Ann. Inst. Henri Poincare Probab. Stat. 47 (2011) 725-747] plays a key role.
引用
收藏
页码:2351 / 2392
页数:42
相关论文
共 40 条
[1]   STOPPING TIMES AND TIGHTNESS [J].
ALDOUS, D .
ANNALS OF PROBABILITY, 1978, 6 (02) :335-340
[2]  
[Anonymous], 1992, ENCY MATH ITS APPL, DOI DOI 10.1017/CBO9780511666223
[3]  
Bensoussan A., 1973, J FUNCT ANAL, V13, P195
[4]   Large deviation principle and inviscid shell models [J].
Bessaih, Hakima ;
Millet, Annie .
ELECTRONIC JOURNAL OF PROBABILITY, 2009, 14 :2551-2579
[5]  
Boué M, 1998, ANN PROBAB, V26, P1641
[6]   Strong solutions for SPDE with locally monotone coefficients driven by Levy noise [J].
Brzezniak, Zdzislaw ;
Liu, Wei ;
Zhu, Jiahui .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2014, 17 :283-310
[7]  
Budhiraja A., 2000, Probab. Math. Statistics-Wroclaw University, V20, P39
[8]   Large deviations for infinite dimensional stochastic dynamical systems [J].
Budhiraja, Amarjit ;
Dupuis, Paul ;
Maroulas, Vasileios .
ANNALS OF PROBABILITY, 2008, 36 (04) :1390-1420
[9]   Large deviations for stochastic partial differential equations driven by a Poisson random measure [J].
Budhiraja, Amarjit ;
Chen, Jiang ;
Dupuis, Paul .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2013, 123 (02) :523-560
[10]   Variational representations for continuous time processes [J].
Budhiraja, Amarjit ;
Dupuis, Paul ;
Maroulas, Vasileios .
ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2011, 47 (03) :725-747