Orthogonal neighborhood preserving projections

被引:25
作者
Kokiopoulou, E [1 ]
Saad, Y [1 ]
机构
[1] Univ Minnesota, Comp Sci & Engn Dept, Minneapolis, MN 55455 USA
来源
Fifth IEEE International Conference on Data Mining, Proceedings | 2005年
关键词
D O I
10.1109/ICDM.2005.113
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Orthogonal Neighborhood Preserving Projections (ONPP) is a linear dimensionality reduction technique which attempts to preserve both the intrinsic neighborhood geometry of the data samples and the global geometry The proposed technique constructs a weighted data graph where the weights are constructed in a data-driven fashion, similarly to Locally Linear Embedding (LLE). A major difference with the standard LLE where the mapping between the input and the reduced spaces is implicit, is that ONPP employs an explicit linear mapping between the two. As a result, and in contrast with LLE, handling new data samples becomes straightforward, as this amounts to a simple linear transformation. ONPP shares some of the properties of Locality Preserving Projections (LPP). Both ONPP and LPP rely on a k-nearest neighbor graph in order to capture the data topology. However our algorithm inherits the characteristics of LLE in preserving the structure of local neighborhoods, while LPP aims at preserving only locality without specifically aiming at preserving the geometric structure. This feature makes ONPP an effective method for data visualization. We provide ample experimental evidence to demonstrate the advantageous characteristics of ONPP using well known synthetic test cases as well as real life data from computational biology and computer vision.
引用
收藏
页码:234 / 241
页数:8
相关论文
共 13 条
  • [1] Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling
    Alizadeh, AA
    Eisen, MB
    Davis, RE
    Ma, C
    Lossos, IS
    Rosenwald, A
    Boldrick, JG
    Sabet, H
    Tran, T
    Yu, X
    Powell, JI
    Yang, LM
    Marti, GE
    Moore, T
    Hudson, J
    Lu, LS
    Lewis, DB
    Tibshirani, R
    Sherlock, G
    Chan, WC
    Greiner, TC
    Weisenburger, DD
    Armitage, JO
    Warnke, R
    Levy, R
    Wilson, W
    Grever, MR
    Byrd, JC
    Botstein, D
    Brown, PO
    Staudt, LM
    [J]. NATURE, 2000, 403 (6769) : 503 - 511
  • [2] Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays
    Alon, U
    Barkai, N
    Notterman, DA
    Gish, K
    Ybarra, S
    Mack, D
    Levine, AJ
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1999, 96 (12) : 6745 - 6750
  • [3] [Anonymous], ADV NEURAL INFORM PR
  • [4] [Anonymous], 2003, Statistical pattern recognition
  • [5] [Anonymous], 1998, Technical Report 24
  • [6] [Anonymous], 2003, ADV NEURAL INFORM PR
  • [7] Laplacian eigenmaps for dimensionality reduction and data representation
    Belkin, M
    Niyogi, P
    [J]. NEURAL COMPUTATION, 2003, 15 (06) : 1373 - 1396
  • [8] Comparison of discrimination methods for the classification of tumors using gene expression data
    Dudoit, S
    Fridlyand, J
    Speed, TP
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2002, 97 (457) : 77 - 87
  • [9] Nonlinear dimensionality reduction by locally linear embedding
    Roweis, ST
    Saul, LK
    [J]. SCIENCE, 2000, 290 (5500) : 2323 - +
  • [10] SAAD Y, 1992, NUMERICAL METHODS LA