A NOTE ON APPROXIMATION OF CONTINUOUS FUNCTIONS ON NORMED SPACES

被引:1
作者
Mytrofanov, M. A. [1 ]
Ravsky, A., V [1 ]
机构
[1] Natl Acad Sci Ukraine, Pidstryhach Inst Appl Problems Mech & Math, 3b Naukova Str, UA-79060 Lvov, Ukraine
关键词
normed space; continuous function; analytic function; *-analytic function; uniform approximation; separating polynomial;
D O I
10.15330/cmp.12.1.107-110
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let X be a real separable normed space X admitting a separating polynomial. We prove that each continuous function from a subset A of X to a real Banach space can be uniformly approximated by restrictions to A of functions, which are analytic on open subsets of X. Also we prove that each continuous function to a complex Banach space from a complex separable normed space, admitting a separating *-polynomial, can be uniformly approximated by *-analytic functions.
引用
收藏
页码:107 / 110
页数:4
相关论文
共 7 条
[1]  
[Anonymous], 1989, Sigma Series in Pure Mathematics
[2]  
Gonzalo R., 1997, EXTRACTA MATH, V12, P145
[3]  
Kurzweil J., 1954, STUD MATH, V14, P214, DOI 10.4064/sm-14-2-214-231
[4]  
Mitrofanov MA, 2009, MATH NOTES+, V86, P530, DOI [10.4213/mzm5161, 10.1134/S0001434609090302]
[5]   Separating polynomials, uniform analytical and separating functions [J].
Mytrofanov, M. A. .
CARPATHIAN MATHEMATICAL PUBLICATIONS, 2015, 7 (02) :197-208
[6]  
Nemirovskii A.S., 1973, Mat. USSR-Sb, V21, P255, DOI [DOI 10.1070/SM1973V021N02ABEH002016, /10.1070/SM1973v021n02ABEH002016]
[7]  
Ravsky A.V, 2012, J MATH SCI NY, V185, P792, DOI [10.1007/s10958-012-0961-6, DOI 10.1007/S10958-012-0961-6]