Semilinear PDEs on self-similar fractals

被引:54
作者
Falconer, KJ [1 ]
机构
[1] Univ St Andrews, Inst Math, St Andrews KY16 9SS, Fife, Scotland
关键词
D O I
10.1007/s002200050703
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A Laplacian may be defined on self-similar fractal domains in terms of a suitable self-similar Dirichlet form, enabling discussion of elliptic PDEs on such domains. In this context it is shown that that semilinear equations such as Delta u + u(p) = 0, with zero Dirichlet boundary conditions, have non-trivial non-negative solutions if 0 < nu less than or equal to 2 and p > 1, or if nu > 2 and 1 < p < (nu + 2)/(nu - 2), where nu is the "intrinsic dimension" or "spectral dimension" of the system. Thus the intrinsic dimension takes the role of the Euclidean dimension in the classical case in determining critical exponents of semilinear problems.
引用
收藏
页码:235 / 245
页数:11
相关论文
共 21 条
[1]  
Ambrosetti A., 1973, Journal of Functional Analysis, V14, P349, DOI 10.1016/0022-1236(73)90051-7
[2]  
AMBROSETTI A, 1992, PRIMER NONLINEAR ANA
[3]  
[Anonymous], TOPOL METHODS NONLIN
[4]   Localized eigenfunctions of the Laplacian on pcf self-similar sets [J].
Barlow, MT ;
Kigami, J .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1997, 56 :320-332
[5]   TRANSITION DENSITIES FOR BROWNIAN-MOTION ON THE SIERPINSKI CARPET [J].
BARLOW, MT ;
BASS, RF .
PROBABILITY THEORY AND RELATED FIELDS, 1992, 91 (3-4) :307-330
[6]  
Biroli M., 1995, REND LINCEI-MAT APPL, V6, P37
[7]  
Chow S-N., 2012, METHODS BIFURCATION
[8]  
Falconer K., 1997, Techniques in fractal geometry
[9]  
FALCONER K, 1992, FRACTAL GEOMETRY MAT
[10]  
Hambly BM, 1997, ANN PROBAB, V25, P1059