QTL mapping of phosphorus efficiency and relative biologic characteristics in maize (Zea mays L.) at two sites

被引:59
|
作者
Chen, Junyi [1 ,2 ]
Xu, Li [1 ,2 ]
Cai, Yilin [1 ]
Xu, Jun [1 ]
机构
[1] Southwest Univ, Maize Inst, Minist Agr, Key Lab Biotechnol & Crop Qual Improvement, Chongqing 400716, Peoples R China
[2] Chongqing Med & Pharmaceut Coll, Chongqing 400000, Peoples R China
关键词
Maize; QTL analysis; Phosphorus efficiency; Relative biologic characteristics; Relative root exudations;
D O I
10.1007/s11104-008-9698-x
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
The phosphorus efficiency, relative biologic characteristics and relative root exudations as well as the quantitative trait loci associated with these traits were determined for an F-2:3 population derived from the cross of two contrasting maize (Zea mays L.) genotypes, 082 and Ye107. A total of 241 F-2:3 families were evaluated in replicated trials under normal phosphorus (50 kg P/ha) and low phosphorus (0 kg P/ha) conditions in 2007 at two sites (Kaixian and Southwest University). The genetic map constructed by 275 SSR and 146 AFLP markers spanned 1,681.3 cM in length with an average interval of 3.84 cM. The heritability of PE, PAE, RPH, RBW, RRW, RLA, TPS, RTW, RFN, RAP and RH was all high (h(b)(2) > 60%) whereas the heritability of root exudations was all low (h(b)(2) > 60%). By using composite interval mapping (CIM), a total of 30 and 45 distinct QTLs were identified at Kaixian and Southwest University. At two sites, the number of same QTL located on common region was 16, five for PE (bins 1.07, 4.09, 5.05, 5.07, 5.08), three for RBW (bins 3.04, 5.04, 6.05), three for RRW (bins 5.05, 5.06, 5.07), one for RLA (bins 3.04), two for TPS (bins 3.08, 5.07), two for RTW (bins 5.05, 5.06). These QTLs explained 21% of the phenotypic variation of PE, 5-9% of RBW, 13-16% of RRW, 9% of TPS, 7% of RTW, respectively. The 16 common QTLs displayed mostly partial dominance or over-dominance gene action. Most QTL alleles conferring high values for the traits came from two parents. Mapping analysis identified chromosomal regions associated with two or more traits in a cluster, which was consistent with correlation among traits. The result showed either pleiotropy or tight linkage among QTL. Five common regions for same QTL at different site were found in the interval bnlg1556-bnlg1564 (bins 1.06), mmc0341-umc1101 (bins 4.08), mmc0282-phi333597 (bins 5.05), bnlg1346-bnlg1695 (bins 5.07) and bnlg118a-umc2136 (bins 5.08), which were important for PE. The information reported in the present paper may be useful for improving phosphorus efficiency by means of marker-assisted selection.
引用
收藏
页码:251 / 266
页数:16
相关论文
共 50 条
  • [1] QTL mapping of phosphorus efficiency and relative biologic characteristics in maize (Zea mays L.) at two sites
    Junyi Chen
    Li Xu
    Yilin Cai
    Jun Xu
    Plant and Soil, 2008, 313 : 251 - 266
  • [2] QTL mapping of resistance to sheath blight in maize (Zea mays L.)
    Yang, H
    Yang, JP
    Rong, TZ
    Tan, J
    Qiu, ZG
    CHINESE SCIENCE BULLETIN, 2005, 50 (08): : 782 - 787
  • [3] QTL mapping of resistance to sheath blight in maize (Zea mays L.)
    YANG Hua1
    2. Crops Institute of Sichuan Academy of Agricultural Science
    3. Chongqing Academy of Agricultural Science
    ChineseScienceBulletin, 2005, (08) : 782 - 787
  • [4] QTL mapping of maize (Zea mays L.) kernel traits under low-phosphorus stress
    Tao Jiang
    Chenghua Zhang
    Zhi Zhang
    Min Wen
    Hongbo Qiu
    Physiology and Molecular Biology of Plants, 2023, 29 (3) : 435 - 445
  • [5] Mapping of QTL controlling root hair length in maize (Zea mays L.) under phosphorus deficiency
    Jinming Zhu
    Shawn M. Kaeppler
    Jonathan P. Lynch
    Plant and Soil, 2005, 270 : 299 - 310
  • [6] QTL mapping of maize (Zea mays L.) kernel traits under low-phosphorus stress
    Jiang, Tao
    Zhang, Chenghua
    Zhang, Zhi
    Wen, Min
    Qiu, Hongbo
    PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS, 2023, 29 (03) : 435 - 445
  • [7] Mapping of QTL controlling root hair length in maize (Zea mays L.) under phosphorus deficiency
    Zhu, JM
    Kaeppler, SM
    Lynch, JP
    PLANT AND SOIL, 2005, 270 (1-2) : 299 - 310
  • [8] Genetic analysis and QTL mapping for pericarp thickness in maize (Zea mays L.)
    Gong, Guantong
    Jia, Haitao
    Tang, Yunqi
    Pei, Hu
    Zhai, Lihong
    Huang, Jun
    BMC PLANT BIOLOGY, 2024, 24 (01)
  • [9] QTL mapping of coleorhiza length in maize (Zea mays L.) under two germination environmental conditions
    Jiang, Xuwen
    Tian, Baohua
    Zhang, Weimin
    Wang, Guoying
    Wang, Jianhua
    PLANT BREEDING, 2011, 130 (06) : 625 - 632
  • [10] QTL mapping and phenotypic variation of root anatomical traits in maize (Zea mays L.)
    Burton, Amy L.
    Johnson, James
    Foerster, Jillian
    Hanlon, Meredith T.
    Kaeppler, Shawn M.
    Lynch, Jonathan P.
    Brown, Kathleen M.
    THEORETICAL AND APPLIED GENETICS, 2015, 128 (01) : 93 - 106