Golden ratio and phyllotaxis, a clear mathematical link

被引:6
作者
Bergeron, Francois [1 ]
Reutenauer, Christophe [1 ]
机构
[1] Univ Quebec Montreal, Dept Math, Montreal, PQ, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Modular group; Markoff approximation theory; Golden ratio; Phyllotaxis;
D O I
10.1007/s00285-018-1265-3
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Exploiting Markoff's theory for rational approximations of real numbers, we explicitly link how hard it is to approximate a given number to an idealized notion of growth capacity for plants which we express as a modular invariant function depending on this number. Assuming that our growth capacity is biologically relevant, this allows us to explain in a satisfying mathematical way why the golden ratio occurs in nature.
引用
收藏
页码:1 / 19
页数:19
相关论文
共 24 条
[1]   MODEL OF CONTACT PRESSURE IN PHYLLOTAXIS [J].
ADLER, I .
JOURNAL OF THEORETICAL BIOLOGY, 1974, 45 (01) :1-79
[2]  
Aigner M., 2013, Markov's Theorem and 100 Years of the Uniqueness Conjecture
[3]   A dynamical system for plant pattern formation:: A rigorous analysis [J].
Atela, P ;
Golé, C ;
Hotton, S .
JOURNAL OF NONLINEAR SCIENCE, 2002, 12 (06) :641-676
[4]  
Bacher R., 2014, CONFLU MATH, V6, P3, DOI [10.5802/cml.10, DOI 10.5802/CML.10]
[5]   ROLE OF INTERMEDIATE CONVERGENTS IN TAITS EXPLANATION FOR PHYLLOTAXIS [J].
COXETER, HSM .
JOURNAL OF ALGEBRA, 1972, 20 (01) :167-&
[6]   Phyllotaxis as a dynamical self organizing process .1. The spiral modes resulting from time-periodic iterations [J].
Douady, S ;
Couder, Y .
JOURNAL OF THEORETICAL BIOLOGY, 1996, 178 (03) :255-274
[7]   Phyllotaxis as a dynamical self organizing process .3. The simulation of the transient regimes of ontogeny [J].
Douady, S ;
Couder, Y .
JOURNAL OF THEORETICAL BIOLOGY, 1996, 178 (03) :295-&
[8]   Phyllotaxis as a dynamical self organizing process .2. The spontaneous formation of a periodicity and the coexistence of spiral and whorled patterns [J].
Douady, S ;
Couder, Y .
JOURNAL OF THEORETICAL BIOLOGY, 1996, 178 (03) :275-294
[9]  
Douady S., 1998, SYMMETRY PLANTS WORL, P335
[10]  
Hermite C, 1916, J REINE ANGEW MATH, V41, P191