Fractional maximal operator in Orlicz spaces

被引:11
作者
Musil, Vit [1 ]
机构
[1] Charles Univ Prague, Fac Math & Phys, Dept Math Anal, Sokolovska 83, Prague 18675 8, Czech Republic
关键词
Fractional maximal operator; Orlicz spaces; Reduction theorem; Optimality; SOBOLEV EMBEDDINGS; INEQUALITIES;
D O I
10.1016/j.jmaa.2019.01.034
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This work studies the fractional maximal operator acting between Orlicz spaces. The necessary and sufficient conditions for the existence of optimal target and domain spaces are established and the explicit formulas for corresponding optimal Young functions are presented. Also, we characterize whether the operator is bounded between two given Orlicz spaces. (C) 2019 Elsevier Inc. All rights reserved.
引用
收藏
页码:94 / 115
页数:22
相关论文
共 17 条
[1]  
[Anonymous], 2002, MONOGR TXB PURE APPL
[2]  
Bennett Colin, 1988, Pure and Applied Mathematics, V129
[3]   INDICES FOR ORLICZ SPACES [J].
BOYD, DW .
PACIFIC JOURNAL OF MATHEMATICS, 1971, 38 (02) :315-&
[4]  
Cianchi A, 1996, INDIANA U MATH J, V45, P39
[5]   Sobolev embeddings into BMO, VMO, and L∞ [J].
Cianchi, A ;
Pick, L .
ARKIV FOR MATEMATIK, 1998, 36 (02) :317-340
[6]  
Cianchi A, 2000, STUD MATH, V138, P277
[7]   Strong and weak type inequalities for some classical operators in Orlicz spaces [J].
Cianchi, A .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1999, 60 :187-202
[8]  
Cianchi A., 2019, INDIANA U MATH J
[9]   Higher-order Sobolev and Poincare inequalities in Orlicz spaces [J].
Cianchi, Andrea .
FORUM MATHEMATICUM, 2006, 18 (05) :745-767
[10]   Korn type inequalities in Orlicz spaces [J].
Cianchi, Andrea .
JOURNAL OF FUNCTIONAL ANALYSIS, 2014, 267 (07) :2313-2352