Design of 0.365-THz Backward Wave Oscillator using Staggered Double Grating SWS and Sheet Beam

被引:0
|
作者
Zhang, Jin [1 ]
Yin, Huabi [2 ]
Zhang, Tianzhong [1 ]
Alfadhl, Yasir [1 ]
Chen, Xiaodong [1 ]
Cross, Adrian [2 ]
He, Wenlong [3 ]
Xie, Jie [2 ]
机构
[1] Queen Mary Univ London, Sch Elect Engn & Comp Sci, London E1 4NS, England
[2] Univ Strathclyde, Dept Phys, Glasgow G1 1XQ, Lanark, Scotland
[3] Shenzhen Univ, Coll Elect Sci & Technol, Shenzhen 518061, Peoples R China
来源
2019 12TH UK-EUROPE-CHINA WORKSHOP ON MILLIMETER WAVES AND TERAHERTZ TECHNOLOGIES (UCMMT) | 2019年
基金
英国工程与自然科学研究理事会;
关键词
THz source; backward wave oscillator (BWO); staggered double grating (SDG);
D O I
10.1109/ucmmt47867.2019.9008255
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We have designed a backward wave oscillator (BWO) using a staggered double grating (SDG) slow-wave structure (SWS) and a sheet beam generated by a pseudo-spark cathode. The CST simulation results for the high-frequency characteristics of the SWS are analyzed, and the operating oscillation frequency point is found to be 365.13 GHz at 35000 V. The BWO model is created and the power performance is obtained with particle-in-cell (PIC) simulation. The frequency is 365.93 GHz at 35000 V, which is 0.16% higher than the predicted one by the Brillouin diagram. In the voltage range from 33500 V to 37000 V, a bandwidth of 2.38 GHz with power of over 200 W is achieved. The power could be over 1000 W from 365.5 GHz to 365.5 GHz, showing that significant output power is obtained.
引用
收藏
页数:3
相关论文
共 50 条
  • [1] Design of Dual-Band High-Power Backward Wave Oscillator using Double Staggered Grating and Pseudospark-Sourced Sheet Beam
    Zhang, Jin
    Alfadhl, Yasir
    Chen, Xiaodong
    Zhang, Liang
    Cross, Adrian W.
    2021 14TH UK-EUROPE-CHINA WORKSHOP ON MILLIMETRE-WAVES AND TERAHERTZ TECHNOLOGIES (UCMMT 2021), 2021,
  • [2] 0.34THz Staggered Double Vane Backward Wave Oscillator
    He, Peng
    Liu, Wenxin
    Zhong, Jianwei
    Zhang, Fengyuan
    2022 CROSS STRAIT RADIO SCIENCE & WIRELESS TECHNOLOGY CONFERENCE, CSRSWTC, 2022,
  • [3] Preliminary Analysis of the Coaxial Double Staggered Grating Structure for a Hollow Beam Backward Wave Oscillator
    Zheng, Yuan
    Luhmann, N. C.
    IEEE TRANSACTIONS ON ELECTRON DEVICES, 2022, 69 (07) : 3941 - 3946
  • [4] Simulation of a THz Sheet Beam Cyclotron Resonance Staggered Double Grating Traveling Wave Tube
    Fan, Yu
    Zhang, Zhiqiang
    Luo, Jirun
    Liu, Yalin
    Au, Min
    2019 44TH INTERNATIONAL CONFERENCE ON INFRARED, MILLIMETER, AND TERAHERTZ WAVES (IRMMW-THZ), 2019,
  • [5] Research on 1.0-THz Graphene-Coated Staggered Double-Grating Backward Wave Oscillator
    Deng, Fan
    Liu, Wenxin
    Wang, Jianliang
    Zhao, Kedong
    Zhang, Zhiqiang
    Yang, Ziqiang
    IEEE TRANSACTIONS ON PLASMA SCIENCE, 2024, 52 (04) : 1531 - 1538
  • [6] Simulation of a G-band sheet beam backward wave oscillator with double staggered metallic rod array
    Liu, Guo
    He, Wenlong
    Cross, Adrian W.
    Yin, Huabi
    Bowes, David
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2013, 46 (34)
  • [7] Grating rectangular waveguide for THz backward wave oscillator
    Zhang Kai-Chun
    Chen Ke
    Wang Qi
    Sheng Chang-Jian
    Yuan Xue-Song
    JOURNAL OF INFRARED AND MILLIMETER WAVES, 2017, 36 (06) : 655 - 659
  • [8] Design, Simulation, and Cold Test of a W-Band Double Nonparallel Staggered Grating Backward Wave Oscillator
    Zhang, Jin
    Alfadhl, Yasir
    Chen, Xiaodong
    Zhang, Liang
    Cross, Adrian W.
    IEEE TRANSACTIONS ON ELECTRON DEVICES, 2022, 69 (10) : 5814 - 5818
  • [9] Output characteristics of a 0.14 THz dual sheet beam backward wave oscillator based on a hole-grating slow wave structure
    Tang, Xiaopin
    Yang, Ziqiang
    Shi, Zongjun
    Lan, Feng
    Zeng, Hongxin
    Zhang, Ting
    PHYSICS OF PLASMAS, 2016, 23 (07)
  • [10] A THz Backward-Wave Oscillator Based on a Double-Grating Rectangular Waveguide
    Liu, Qing-Lun
    Wang, Zi-Cheng
    Liu, Pu-Kun
    Du, Chao-Hai
    Li, Hai-Qiang
    Xu, An-Yu
    IEEE TRANSACTIONS ON ELECTRON DEVICES, 2013, 60 (04) : 1463 - 1468