Third-order methods on Riemannian manifolds under Kantorovich conditions

被引:9
作者
Amat, S. [1 ]
Busquier, S. [1 ]
Castro, R. [2 ]
Plaza, S. [2 ]
机构
[1] Univ Politecn Cartagena, Dept Matemat Aplicada & Estadist, Cartagena, Spain
[2] Univ Valparaiso, Fac Ciencias, Dept Matemat, Valparaiso, Chile
关键词
Third-order iterative methods; Riemannian manifolds; Semi local convergence; NEWTONS METHOD; QUADRATIC EQUATIONS; GAMMA-CONDITION; R-ORDER; LEAST; CONVERGENCE; ITERATION;
D O I
10.1016/j.cam.2013.04.023
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
One of the most studied problems in numerical analysis is the approximation of nonlinear equations using iterative methods. In the past years, attention has been paid in studying Newton's method on manifolds. In this paper, we generalize this study by considering a general class of third-order iterative methods. A characterization of the convergence under Kantorovich type conditions and optimal error estimates is found. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:106 / 121
页数:16
相关论文
共 38 条
[1]  
Absil PA, 2008, OPTIMIZATION ALGORITHMS ON MATRIX MANIFOLDS, P1
[2]   Newton's method on Riemannian manifolds and a geometric model for the human spine [J].
Adler, RL ;
Dedieu, JP ;
Margulies, JY ;
Martens, M ;
Shub, M .
IMA JOURNAL OF NUMERICAL ANALYSIS, 2002, 22 (03) :359-390
[3]   High order iterative schemes for quadratic equations [J].
Alarcon, Virginia ;
Amat, Sergio ;
Busquier, Sonia ;
Manzano, Fernando .
NUMERICAL ALGORITHMS, 2008, 48 (04) :373-381
[4]   A unifying local convergence result for Newton's method in Riemannian manifolds [J].
Alvarez, F. ;
Bolte, J. ;
Munier, J. .
FOUNDATIONS OF COMPUTATIONAL MATHEMATICS, 2008, 8 (02) :197-226
[5]   Third-order iterative methods under Kantorovich conditions [J].
Amat, S. ;
Busquier, S. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 336 (01) :243-261
[6]   An adaptive version of a fourth-order iterative method for quadratic equations [J].
Amat, S ;
Busquier, S ;
Gutiérrez, JM .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2006, 191 (02) :259-268
[7]   Third-order iterative methods with applications to Hammerstein equations: A unified approach [J].
Amat, S. ;
Busquier, S. ;
Gutierrez, J. M. .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2011, 235 (09) :2936-2943
[8]  
[Anonymous], 1992, RIEMANNIAN GEOMETRY
[9]  
[Anonymous], 2008, CONVERGENCE APPL NEW, DOI DOI 10.1007/978-0-387-72743-1
[10]  
[Anonymous], 2005, COMPREHENSIVE INTRO