On size, order, diameter and minimum degree

被引:5
作者
Mukwembi, Simon [1 ]
机构
[1] Univ KwaZulu Natal, Sch Math Stat & Comp Sci, Kwa Zulu, South Africa
基金
新加坡国家研究基金会;
关键词
Size; diameter; minimum degree; GRAPHS;
D O I
10.1007/s13226-013-0024-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a finite connected graph. We give an asymptotically tight upper bound on the size of G in terms of order, diameter and minimum degree. Our result is a strengthening of an old classical theorem of Ore [Diameters in graphs, J. Combin. Theory, 5 (1968), 75-81] if minimum degree is prescribed and constant.
引用
收藏
页码:467 / 472
页数:6
相关论文
共 8 条
[1]   On the sizes of graphs and their powers: The undirected case [J].
Auger, David ;
Charon, Irene ;
Hudry, Olivier ;
Lobstein, Antoine .
DISCRETE APPLIED MATHEMATICS, 2011, 159 (16) :1666-1675
[2]   THE AVERAGE DISTANCE AND THE INDEPENDENCE NUMBER [J].
CHUNG, FRK .
JOURNAL OF GRAPH THEORY, 1988, 12 (02) :229-235
[3]   Maximum sizes of graphs with given domination parameters [J].
Dankelmann, P ;
Domke, GS ;
Goddard, W ;
Grobler, P ;
Hattingh, JH ;
Swart, HC .
DISCRETE MATHEMATICS, 2004, 281 (1-3) :137-148
[4]   Minimum size of a graph or digraph of given radius [J].
Dankelmann, Peter ;
Volkmann, Lutz .
INFORMATION PROCESSING LETTERS, 2009, 109 (16) :971-973
[5]  
Ore O., 1968, J COMB THEORY, V5, P7581
[6]   On the least size of a graph with a given degree set [J].
Tripathi, Amitabha ;
Vijay, Sujith .
DISCRETE APPLIED MATHEMATICS, 2006, 154 (17) :2530-2536
[7]  
Vizing V., 1967, SOV MATH DOKL, V8
[8]  
Zhou T., 2004, OR T, V8, P1