Using the etalon effect for in situ balancing of the Advanced Virgo arm cavities

被引:15
作者
Hild, S. [1 ]
Freise, A. [1 ]
Mantovani, M. [4 ]
Chelkowski, S. [1 ]
Degallaix, J. [2 ,3 ]
Schilling, R. [2 ,3 ]
机构
[1] Univ Birmingham, Sch Phys & Astron, Birmingham B15 2TT, W Midlands, England
[2] Max Planck Inst Gravitat Phys, Albert Einstein Inst, D-30167 Hannover, Germany
[3] Leibniz Univ Hannover, D-30167 Hannover, Germany
[4] EGO, I-56021 Cascina, PI, Italy
基金
英国科学技术设施理事会;
关键词
WAVE;
D O I
10.1088/0264-9381/26/2/025005
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Several large-scale interferometric gravitational-wave detectors use resonant arm cavities to enhance the light power in the interferometer arms. These cavities are based on different optical designs: One design uses wedged input mirrors to create additional optical pick-off ports for deriving control signals. The second design employs input mirrors without wedge and thus offers the possibility of using the etalon effect inside the input mirrors for tuning the finesse of the arm cavities. In this paper, we introduce a concept of maximum flexibility that combines both of these options, by featuring wedges at the input mirrors and using the etalon effect instead in the end mirrors. We present a design for the arm cavities of Advanced Virgo. The paper focusses on evaluating the influence of etalon imperfections onto the overall Advanced Virgo performance. We use numerical simulations to derive requirements for the manufacturing accuracy of an end mirror etalon for Advanced Virgo. Furthermore, we give analytical approximations for the achievable tuning range of an imperfect etalon depending on the curvature and orientation mismatch of the two etalon surfaces. We evaluate the displacement noise originating from temperature driven optical phase noise of the etalon. In addition the influence of the etalon effect onto other Advanced Virgo subsystems such as the alignment sensing and control is analysed.
引用
收藏
页数:12
相关论文
共 18 条
[1]   Status of VIRGO [J].
Acernese, F ;
Amico, P ;
Arnaud, N ;
Babusci, D ;
Barillé, R ;
Barone, F ;
Barsotti, L ;
Barsuglia, M ;
Beauville, F ;
Bizouard, MA ;
Boccara, C ;
Bondu, F ;
Bosi, L ;
Bradaschia, C ;
Bracci, L ;
Braccini, S ;
Brillet, A ;
Brisson, V ;
Brocco, L ;
Buskulic, D ;
Calamai, G ;
Calloni, E ;
Campagna, E ;
Cavalier, F ;
Cella, G ;
Chassande-Mottin, E ;
Cleva, F ;
Cokelaer, T ;
Conforto, G ;
Corda, C ;
Coulon, JP ;
Cuoco, E ;
Dattilo, V ;
Davier, M ;
De Rosa, R ;
Di Fiore, L ;
Di Virgilio, A ;
Dujardin, B ;
Eleuteri, A ;
Enard, D ;
Ferrante, I ;
Fidecaro, F ;
Fiori, I ;
Flaminio, R ;
Fournier, JD ;
Frasca, S ;
Frasconi, F ;
Gammaitoni, L ;
Gennai, A ;
Giazotto, A .
CLASSICAL AND QUANTUM GRAVITY, 2004, 21 (05) :S385-S394
[2]   COUPLING-COEFFICIENTS OF AN INCIDENT WAVE AND THE MODES OF A SPHERICAL OPTICAL-RESONATOR IN THE CASE OF MISMATCHING AND MISALIGNMENT [J].
BAYERHELMS, F .
APPLIED OPTICS, 1984, 23 (09) :1369-1380
[3]   Corner reflectors and quantum-non-demolition measurements in gravitational wave antennae [J].
Braginsky, VB ;
Vyatchanin, SP .
PHYSICS LETTERS A, 2004, 324 (5-6) :345-360
[4]   Frequency-domain interferometer simulation with higher-order spatial modes [J].
Freise, A ;
Heinzel, G ;
Lück, H ;
Schilling, R ;
Willke, B ;
Danzmann, K .
CLASSICAL AND QUANTUM GRAVITY, 2004, 21 (05) :S1067-S1074
[5]   Dual recycling for GEO 600 [J].
Grote, H ;
Freise, A ;
Malec, M ;
Heinzel, G ;
Willke, B ;
Lück, H ;
Strain, KA ;
Hough, J ;
Danzmann, K .
CLASSICAL AND QUANTUM GRAVITY, 2004, 21 (05) :S473-S480
[6]   The status of GEO 600 [J].
Hild, S. .
CLASSICAL AND QUANTUM GRAVITY, 2006, 23 (19) :S643-S651
[7]  
HILD S, VIR058A08
[8]   Adaptive thermal compensation of test masses in advanced LIGO [J].
Lawrence, R ;
Zucker, M ;
Fritschel, P ;
Marfuta, P ;
Shoemaker, D .
CLASSICAL AND QUANTUM GRAVITY, 2002, 19 (07) :1803-1812
[9]  
MANTOVANI M, VIR027A08
[10]   RECYCLING IN LASER-INTERFEROMETRIC GRAVITATIONAL-WAVE DETECTORS [J].
MEERS, BJ .
PHYSICAL REVIEW D, 1988, 38 (08) :2317-2326