Extremal bicyclic graphs with respect to Mostar index

被引:54
作者
Tepeh, Aleksandra [1 ,2 ]
机构
[1] Univ Maribor, Fac Elect Engn & Comp Sci, Koroska Cesta 46, Maribor 2000, Slovenia
[2] Fac Informat Studies, Ljubljanska Cesta 31a, Novo Mesto 8000, Slovenia
关键词
Mostar index; Bond-additive index; Bicyclic graphs; MATHEMATICAL ASPECTS;
D O I
10.1016/j.amc.2019.03.014
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For an edge uv of a graph G, n(u) denotes the number of vertices of G closer to u than to v, and similarly n(v) is the number of vertices closer to v than to u. The Mostar index of a graph G is defined as the sum of absolute differences between n(u) and n(v) over all edges uv of G. In the paper we prove a recent conjecture of Doslic et al. (2018) on a characterization of bicyclic graphs with given number of vertices, for which extremal values of Mostar index are attained. (C) 2019 Elsevier Inc. All rights reserved.
引用
收藏
页码:319 / 324
页数:6
相关论文
共 14 条
[1]   Mostar index [J].
Doslic, Tomislav ;
Martinjak, Ivica ;
Skrekovski, Riste ;
Spuzevic, Sanja Tipuric ;
Zubac, Ivana .
JOURNAL OF MATHEMATICAL CHEMISTRY, 2018, 56 (10) :2995-3013
[2]   Degree-Based Topological Indices [J].
Gutman, Ivan .
CROATICA CHEMICA ACTA, 2013, 86 (04) :351-361
[3]  
Klavzar, 2000, WIL INT S D
[4]  
Knor M, 2018, MATCH-COMMUN MATH CO, V79, P685
[5]   Mathematical aspects of Wiener index [J].
Knor, Martin ;
Skrekovski, Riste ;
Tepeh, Aleksandra .
ARS MATHEMATICA CONTEMPORANEA, 2016, 11 (02) :327-352
[6]  
Knor R.Skrekovski, 2014, Quantitative Graph Theory: MathematicalFoundations and Applications, P279
[7]  
Li XL, 2008, MATCH-COMMUN MATH CO, V59, P127
[8]  
Ma YD, 2018, MATCH-COMMUN MATH CO, V80, P85
[9]  
Todeschini R., 2009, HDB MOL DESCRIPTORS
[10]   Bond Additive Modeling 4. QSPR and QSAR Studies of the Variable Adriatic Indices [J].
Vukicevic, Damir .
CROATICA CHEMICA ACTA, 2011, 84 (01) :87-91