Differential effects of distraction during working memory on delay-period activity in the prefrontal cortex and the visual association cortex

被引:104
作者
Yoon, JH
Curtis, CE
D'Esposito, M
机构
[1] Univ Calif Berkeley, Henry H Wheeler Jr Brain Imaging Ctr, Berkeley, CA 94720 USA
[2] Univ Calif Berkeley, Helen Wills Neurosci Inst, Berkeley, CA 94720 USA
[3] Univ Calif Berkeley, Dept Psychol, Berkeley, CA 94720 USA
[4] NYU, Dept Psychol, New York, NY 10003 USA
关键词
working memory; cognition; prefrontal cortex; visual association cortex; event-related fMRI; functional connectivity;
D O I
10.1016/j.neuroimage.2005.08.024
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Maintaining relevant information for later use is a critical aspect of working memory (WM). The lateral prefrontal cortex (PFC) and posterior sensory cortical areas appear to be important in supporting maintenance. However, the relative and unique contributions of these areas remain unclear. We have designed a WM paradigm with distraction to probe the contents of maintenance representations in these regions. During delayed recognition trials of faces, selective interference was evident behaviorally with face distraction leading to significantly worse performance than with scene distraction. Event-related fMRI of the human brain showed that maintenance activity in the lateral PFC, but not in visual association cortex (VAC), was selectively disrupted by face distraction. Additionally, the functional connectivity between the lateral PFC and the VAC was perturbed during these trials. We propose a hierarchical and distributed model of active maintenance in which the lateral PFC codes for abstracted mnemonic information, while sensory areas represent specific features of the memoranda. Furthermore, persistent coactivation between the PFC and sensory areas may be a mechanism by which information is actively maintained. (c) 2005 Elsevier Inc. All rights reserved.
引用
收藏
页码:1117 / 1126
页数:10
相关论文
共 58 条
[1]   The variability of human, BOLD hemodynamic responses [J].
Aguirre, GK ;
Zarahn, E ;
D'Esposito, M .
NEUROIMAGE, 1998, 8 (04) :360-369
[2]   EXPLORING THE ARTICULATORY LOOP [J].
BADDELEY, A ;
LEWIS, V ;
VALLAR, G .
QUARTERLY JOURNAL OF EXPERIMENTAL PSYCHOLOGY SECTION A-HUMAN EXPERIMENTAL PSYCHOLOGY, 1984, 36 (02) :233-252
[3]   A cortical mechanism for triggering top-down facilitation in visual object recognition [J].
Bar, M .
JOURNAL OF COGNITIVE NEUROSCIENCE, 2003, 15 (04) :600-609
[4]  
Bechara A, 1998, J NEUROSCI, V18, P428
[5]   Electrophysiological studies of face perception in humans [J].
Bentin, S ;
Allison, T ;
Puce, A ;
Perez, E ;
McCarthy, G .
JOURNAL OF COGNITIVE NEUROSCIENCE, 1996, 8 (06) :551-565
[6]   Contribution of human prefrontal cortex to delay performance [J].
Chao, LL ;
Knight, RT .
JOURNAL OF COGNITIVE NEUROSCIENCE, 1998, 10 (02) :167-177
[7]   Neuronal activity in posterior parietal area 7a during the delay periods of a spatial memory task [J].
Constantinidis, C ;
Steinmetz, MA .
JOURNAL OF NEUROPHYSIOLOGY, 1996, 76 (02) :1352-1355
[8]   Transient and sustained activity in a distributed neural system for human working memory [J].
Courtney, SM ;
Ungerleider, BG ;
Keil, K ;
Haxby, JV .
NATURE, 1997, 386 (6625) :608-611
[9]   An area specialized for spatial working memory in human frontal cortex [J].
Courtney, SM ;
Petit, L ;
Maisog, JM ;
Ungerleider, LG ;
Haxby, JV .
SCIENCE, 1998, 279 (5355) :1347-1351
[10]   Maintenance versus manipulation of information held in working memory: An event-related fMRI study [J].
D'Esposito, M ;
Postle, BR ;
Ballard, D ;
Lease, J .
BRAIN AND COGNITION, 1999, 41 (01) :66-86