Simulated Co-Optimization of Crystalline Silicon Solar Cell Throughput and Efficiency Using Continuously Ramping Phosphorus Diffusion Profiles

被引:0
作者
Morishige, Ashley E. [1 ]
Fenning, David P. [1 ]
Hofstetter, Jasmin [1 ]
Powell, Douglas M. [1 ]
Buonassisi, Tonio [1 ]
机构
[1] MIT, Cambridge, MA USA
来源
2012 38TH IEEE PHOTOVOLTAIC SPECIALISTS CONFERENCE (PVSC) | 2012年
关键词
iron; gettering; minority carrier lifetime; phosphorus; photovoltaic; sheet resistance; silicon; IMPROVEMENT;
D O I
暂无
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Defect engineering is essential for the production of high-performance silicon photovoltaic (PV) devices with cost-effective solar-grade Si input materials. Phosphorus diffusion gettering (PDG) can mitigate the detrimental effect of metal impurities on PV device performance. Using the Impurity-to-Efficiency (I2E) simulator, we investigate the effect of gettering temperature on minority carrier lifetime while maintaining an approximately constant sheet resistance. We simulate a typical constant temperature plateau profile and an alternative "volcano" profile that consists of a ramp up to a peak temperature above the typical plateau temperature followed by a ramp down with no hold time. Our simulations show that for a given PDG process time, the "volcano" produces an increase in minority carrier lifetime compared to the standard plateau profile for as-grown iron distributions that are typical for multi-crystalline silicon. For an initial total iron concentration of 5x10(13) cm(-3), we simulate a 30% increase in minority carrier lifetime for a fixed PDG process time and a 43% reduction in PDG process cost for a given effective minority carrier lifetime while achieving a constant sheet resistance of 100 Omega/square.
引用
收藏
页码:2213 / 2217
页数:5
相关论文
共 21 条
[1]  
[Anonymous], PHOTOVOLTAICS INT
[2]  
Ballif C., 2001, 17 EUR PHOT SOL EN C, P1
[3]  
Chunduri S. K., 2011, PHOTON INT, V8, P304
[4]   Iron distribution in silicon after solar cell processing: Synchrotron analysis and predictive modeling [J].
Fenning, D. P. ;
Hofstetter, J. ;
Bertoni, M. I. ;
Hudelson, S. ;
Rinio, M. ;
Lelievre, J. F. ;
Lai, B. ;
del Canizo, C. ;
Buonassisi, T. .
APPLIED PHYSICS LETTERS, 2011, 98 (16)
[5]   Iron precipitation in float zone grown silicon [J].
Henley, WB ;
Ramappa, DA .
JOURNAL OF APPLIED PHYSICS, 1997, 82 (02) :589-594
[6]   Impurity-to-efficiency simulator: predictive simulation of silicon solar cell performance based on iron content and distribution [J].
Hofstetter, J. ;
Fenning, D. P. ;
Bertoni, M. I. ;
Lelievre, J. F. ;
del Canizo, C. ;
Buonassisi, T. .
PROGRESS IN PHOTOVOLTAICS, 2011, 19 (04) :487-497
[7]   Towards the tailoring of P diffusion gettering to as-grown silicon material properties [J].
Hofstetter, Jasmin ;
Lelievre, Jean-Francois ;
Fenning, David P. ;
Bertoni, Mariana I. ;
Buonassisi, Tonio ;
del Canizo, Carlos .
GETTERING AND DEFECT ENGINEERING IN SEMICONDUCTOR TECHNOLOGY XIV, 2011, 178-179 :158-+
[8]  
J.C. Schumacher Company, 1993, PROC GUID US PHOSPH, P1
[9]  
Jimenez David W., 2009, Photovoltaics International Journal, P16
[10]   A UNIFIED MOBILITY MODEL FOR DEVICE SIMULATION .1. MODEL-EQUATIONS AND CONCENTRATION-DEPENDENCE [J].
KLAASSEN, DBM .
SOLID-STATE ELECTRONICS, 1992, 35 (07) :953-959