Strong solutions for a compressible fluid model of Korteweg type

被引:116
作者
Kotschote, Matthias [1 ]
机构
[1] Univ Leipzig, Math Inst, D-04009 Leipzig, Germany
来源
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE | 2008年 / 25卷 / 04期
关键词
Korteweg model; compressible fluids; parabolic systems; maximal regularity; H(infinity)-calculus; inhomogeneous boundary conditions;
D O I
10.1016/j.anihpc.2007.03.005
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove existence and uniqueness of local strong solutions for an isothermal model of capillary compressible fluids derived by J.E. Dunn and J. Serrin (1985). This nonlinear problem is approached by proving maximal regularity for a related linear problem in order to formulate a fixed point equation, which is solved by the contraction mapping principle. Localising the linear problem leads to model problems in full and half space, which are treated by Dore-Venni Theory, real interpolation and H(infinity)-calculus. For these steps, it is decisive to find conditions on the inhomogeneities that are necessary and sufficient. (C) 2007 Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:679 / 696
页数:18
相关论文
共 23 条
[1]  
Amann H, 1997, MATH NACHR, V186, P5
[2]   Diffuse-interface methods in fluid mechanics [J].
Anderson, DM ;
McFadden, GB ;
Wheeler, AA .
ANNUAL REVIEW OF FLUID MECHANICS, 1998, 30 :139-165
[3]  
[Anonymous], 2003, EVOLUTION EQUATIONS
[4]   On some compressible fluid models: Korteweg, lubrication, and shallow water systems [J].
Bresch, D ;
Desjardins, B ;
Lin, CK .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2003, 28 (3-4) :843-868
[5]   FREE ENERGY OF A NONUNIFORM SYSTEM .1. INTERFACIAL FREE ENERGY [J].
CAHN, JW ;
HILLIARD, JE .
JOURNAL OF CHEMICAL PHYSICS, 1958, 28 (02) :258-267
[6]   Existence of solutions for compressible fluid models of Korteweg type [J].
Danchin, R ;
Desjardins, B .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2001, 18 (01) :97-133
[7]  
DENK R, 2003, MEM AM MATH SOC, V166
[8]   ON THE CLOSEDNESS OF THE SUM OF 2 CLOSED OPERATORS [J].
DORE, G ;
VENNI, A .
MATHEMATISCHE ZEITSCHRIFT, 1987, 196 (02) :189-201
[9]  
DUNN JE, 1985, ARCH RATION MECH AN, V88, P95
[10]   Two-phase binary fluids and immiscible fluids described by an order parameter [J].
Gurtin, ME ;
Polignone, D ;
Vinals, J .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 1996, 6 (06) :815-831