Enhancement of La0.6Sr0.4Co0.2Fe0.8O3-δ Surface Exchange through Ion Implantation

被引:24
作者
Huang, Y. L. [1 ]
Pellegrinelli, C. [1 ]
Lee, K. T. [1 ,2 ]
Perel, A. [3 ]
Wachsman, E. D. [1 ]
机构
[1] Univ Maryland, Energy Res Ctr, College Pk, MD 20742 USA
[2] Daegu Gyeongbuk Inst Sci & Technol, Dept Energy Syst Engn, Taegu, South Korea
[3] Appl Mat Inc, Varian Semicond Equipment, Gloucester, MA 01930 USA
关键词
ELECTRICAL-CONDUCTIVITY RELAXATION; OXYGEN REDUCTION; IN-SITU; CATHODE; COEFFICIENTS; DIFFUSION; TRANSPORT; ELECTROCHEMISTRY; TEMPERATURE; MECHANISMS;
D O I
10.1149/2.1051508jes
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
La0.6Sr0.4Co0.2Fe0.8O3-delta (LSCF) has been demonstrated to be one of the best performing mixed ionic-electronic conductors (MIEC) for SOFC cathode materials. Surface exchange on LSCF, however, limits oxygen transport and performance. We investigated surface modified LSCF, by Mn ion implantation, for an enhanced surface oxygen exchange rate while maintaining LSCFs oxygen ion conductivity through the bulk. Various implantation energies and ion concentrations were used to create samples with different Mn-ion depth profiles. The oxygen transport properties, chemical diffusion coefficient (D-chem) and effective chemical surface exchange coefficient (k(chem)), were characterized by electrical conductivity relaxation (ECR), using DC four-point probe measurements during the oxygen re-equilibration process. The changes of k(chem) for different Mn doping levels and ion acceleration energies determined with ECR are compared with surface configurations obtained using X-ray photoelectron spectroscopy. The Mn ion implanted LSCF samples show an enhanced k(chem), improving the overall oxygen reduction reaction for the LSCF cathode material. possible factors for the increase in surface exchange for the Mn implanted LSCF samples are discussed. (C) 2015 The Electrochemical Society. All rights reserved.
引用
收藏
页码:F965 / F970
页数:6
相关论文
共 39 条
[1]   Factors governing oxygen reduction in solid oxide fuel cell cathodes [J].
Adler, SB .
CHEMICAL REVIEWS, 2004, 104 (10) :4791-4843
[2]   Determination of Surface Exchange Coefficients of LSM, LSCF, YSZ, GDC Constituent Materials in Composite SOFC Cathodes [J].
Armstrong, E. N. ;
Duncan, K. L. ;
Oh, D. J. ;
Weaver, J. F. ;
Wachsman, E. D. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2011, 158 (05) :B492-B499
[3]   Surface Exchange Coefficients of Composite Cathode Materials Using In Situ Isothermal Isotope Exchange [J].
Armstrong, E. N. ;
Duncan, K. L. ;
Wachsman, E. D. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2011, 158 (03) :B283-B289
[4]   Effect of A and B-site cations on surface exchange coefficient for ABO3 perovskite materials [J].
Armstrong, Eric N. ;
Duncan, Keith L. ;
Wachsman, Eric D. .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2013, 15 (07) :2298-2308
[5]  
Baur E, 1937, Z ELKTROCHEM ANGEW P, V43, P727
[6]   Degradation of La0.6Sr0.4Fe0.8Co0.2O3-δ in carbon dioxide and water atmospheres [J].
Benson, SJ ;
Waller, D ;
Kilner, JA .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1999, 146 (04) :1305-1309
[7]   A MONTE-CARLO COMPUTER-PROGRAM FOR THE TRANSPORT OF ENERGETIC IONS IN AMORPHOUS TARGETS [J].
BIERSACK, JP ;
HAGGMARK, LG .
NUCLEAR INSTRUMENTS & METHODS, 1980, 174 (1-2) :257-269
[8]   OXYGEN-TRANSPORT IN SELECTED NONSTOICHIOMETRIC PEROVSKITE-STRUCTURE OXIDES [J].
CARTER, S ;
SELCUK, A ;
CHATER, RJ ;
KAJDA, J ;
KILNER, JA ;
STEELE, BCH .
SOLID STATE IONICS, 1992, 53 :597-605
[9]   Ion implantation induced enhancement of magnetoresistance in La0.67Ca0.33MnO3 [J].
Chen, CH ;
Talyansky, V ;
Kwon, C ;
Rajeswari, M ;
Sharma, RP ;
Ramesh, R ;
Venkatesan, T ;
Melngailis, J ;
Zhang, Z ;
Chu, WK .
APPLIED PHYSICS LETTERS, 1996, 69 (20) :3089-3091
[10]   Electrochemistry of Mixed Oxygen Ion and Electron Conducting Electrodes in Solid Electrolyte Cells [J].
Chueh, William C. ;
Haile, Sossina M. .
ANNUAL REVIEW OF CHEMICAL AND BIOMOLECULAR ENGINEERING, VOL 3, 2012, 3 :313-341