CellMix: a comprehensive toolbox for gene expression deconvolution

被引:134
|
作者
Gaujoux, Renaud [1 ]
Seoighe, Cathal [2 ]
机构
[1] Univ Cape Town, Inst Infect Dis & Mol Med, Computat Biol Grp, ZA-7700 Rondebosch, South Africa
[2] Natl Univ Ireland Galway, Sch Math Stat & Appl Math, Galway, Ireland
基金
爱尔兰科学基金会;
关键词
D O I
10.1093/bioinformatics/btt351
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Gene expression data are typically generated from heterogeneous biological samples that are composed of multiple cell or tissue types, in varying proportions, each contributing to global gene expression. This heterogeneity is a major confounder in standard analysis such as differential expression analysis, where differences in the relative proportions of the constituent cells may prevent or bias the detection of cell-specific differences. Computational deconvolution of global gene expression is an appealing alternative to costly physical sample separation techniques and enables a more detailed analysis of the underlying biological processes at the cell-type level. To facilitate and popularize the application of such methods, we developed CellMix, an R package that incorporates most state-of-the-art deconvolution methods, into an intuitive and extendible framework, providing a single entry point to explore, assess and disentangle gene expression data from heterogeneous samples.
引用
收藏
页码:2211 / 2212
页数:2
相关论文
共 50 条
  • [1] Comprehensive evaluation of deconvolution methods for human brain gene expression
    Gavin J. Sutton
    Daniel Poppe
    Rebecca K. Simmons
    Kieran Walsh
    Urwah Nawaz
    Ryan Lister
    Johann A. Gagnon-Bartsch
    Irina Voineagu
    Nature Communications, 13
  • [2] Comprehensive evaluation of deconvolution methods for human brain gene expression
    Sutton, Gavin J.
    Poppe, Daniel
    Simmons, Rebecca K.
    Walsh, Kieran
    Nawaz, Urwah
    Lister, Ryan
    Gagnon-Bartsch, Johann A.
    Voineagu, Irina
    NATURE COMMUNICATIONS, 2022, 13 (01)
  • [3] Gene expression deconvolution in clinical samples
    Zhao, Yingdong
    Simon, Richard
    GENOME MEDICINE, 2010, 2
  • [4] Gene expression deconvolution in linear space
    Yi Zhong
    Zhandong Liu
    Nature Methods, 2012, 9 : 8 - 9
  • [5] Gene expression deconvolution in clinical samples
    Yingdong Zhao
    Richard Simon
    Genome Medicine, 2
  • [6] Gene expression deconvolution in linear space
    Shai S Shen-Orr
    Robert Tibshirani
    Atul J Butte
    Nature Methods, 2012, 9 : 9 - 9
  • [7] Gene expression deconvolution in linear space
    Zhong, Yi
    Liu, Zhandong
    NATURE METHODS, 2012, 9 (01) : 8 - 9
  • [8] New tools in the Leishmania gene expression toolbox
    Kraeva, N.
    Podesvova, L.
    Mlacovska, D.
    Ishemgulova, A.
    Yurchenko, V.
    FEBS OPEN BIO, 2018, 8 : 488 - 488
  • [9] Gene expression deconvolution in linear space reply
    Shen-Orr, Shai S.
    Tibshirani, Robert
    Butte, Atul J.
    NATURE METHODS, 2012, 9 (01) : 9 - 9
  • [10] A plasmid toolbox for controlled gene expression across the Proteobacteria
    Schuster, Layla A.
    Reisch, Christopher R.
    NUCLEIC ACIDS RESEARCH, 2021, 49 (12) : 7189 - 7202