Model-Free H∞ Optimal Tracking Control of Constrained Nonlinear Systems via an Iterative Adaptive Learning Algorithm

被引:45
作者
Hou, Jiaxu [1 ]
Wang, Ding [2 ,3 ]
Liu, Derong [4 ]
Zhang, Yun [4 ]
机构
[1] Univ Sci & Technol Beijing, Sch Automat & Elect Engn, Beijing 100083, Peoples R China
[2] Chinese Acad Sci, Inst Automat, State Key Lab Management & Control Complex Syst, Beijing 100190, Peoples R China
[3] Univ Chinese Acad Sci, Sch Comp & Control Engn, Beijing 100049, Peoples R China
[4] Guangdong Univ Technol, Sch Automat, Guangzhou 510006, Peoples R China
来源
IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS | 2020年 / 50卷 / 11期
基金
中国国家自然科学基金; 北京市自然科学基金;
关键词
Adaptive dynamic programming (ADP); control constraints; convergence analysis; H-infinity tracking; neural network (NN); optimal control; STATE-FEEDBACK CONTROL; TIME-SYSTEMS; DESIGN;
D O I
10.1109/TSMC.2018.2863708
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, an H-infinity optimal tracking controller for completely unknown discrete-time nonlinear systems with control constraints is obtained by using an iterative adaptive learning algorithm. An augmented system is established by integrating the tracking error system and the reference trajectory. As an identifier of the unknown systems, a neural network (NN) is introduced with asymptotic stability of the estimation error. An action-disturbance-critic NN structure is proposed to implement the iterative dual heuristic programming algorithm with convergence guarantee of the costate function and the control policy. Simulation results and comparisons are provided to illustrate the superior performance of the designed optimal tracking controller.
引用
收藏
页码:4097 / 4108
页数:12
相关论文
共 51 条
[1]   Policy iterations on the Hamilton-Jacobi-Isaacs equation for H∞ state feedback control with input saturation [J].
Abu-Khalaf, Murad ;
Lewis, Frank L. ;
Huang, Jie .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2006, 51 (12) :1989-1995
[2]   Neurodynamic programming and zero-sum games for constrained control systems [J].
Abu-Khalaf, Murad ;
Lewis, Frank L. ;
Huang, Jie .
IEEE TRANSACTIONS ON NEURAL NETWORKS, 2008, 19 (07) :1243-1252
[3]   Discrete-time nonlinear HJB solution using approximate dynamic programming: Convergence proof [J].
Al-Tamimi, Asma ;
Lewis, Frank L. ;
Abu-Khalaf, Murad .
IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART B-CYBERNETICS, 2008, 38 (04) :943-949
[4]  
Basar T., 1996, IEEE T AUTOMATIC CON, V41, P1397, DOI DOI 10.1109/TAC.1996.536519
[5]  
Basar T., 2002, IEEE T AUTOM CONTROL, V41, P1397
[6]  
Bertsekas D. P., 1996, ATHENA SCI, V27, P1687
[7]  
Cui LL, 2009, ADPRL: 2009 IEEE SYMPOSIUM ON ADAPTIVE DYNAMIC PROGRAMMING AND REINFORCEMENT LEARNING, P16
[8]  
Dierks T., 2009, P 17 MED C CONTR AUT, P1568
[9]   Optimal control of unknown affine nonlinear discrete-time systems using offline-trained neural networks with proof of convergence [J].
Dierks, Travis ;
Thumati, Balaje T. ;
Jagannathan, S. .
NEURAL NETWORKS, 2009, 22 (5-6) :851-860
[10]   Data-Driven Adaptive Optimal Control of Connected Vehicles [J].
Gao, Weinan ;
Jiang, Zhong-Ping ;
Ozbay, Kaan .
IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2017, 18 (05) :1122-1133