Enhanced material defect imaging with a radio-frequency atomic magnetometer

被引:39
作者
Bevington, P. [1 ,2 ]
Gartman, R. [1 ]
Chalupczak, W. [1 ]
机构
[1] Natl Phys Lab, Hampton Rd, Teddington TW11 0LW, Middx, England
[2] Univ Strathclyde, Dept Phys, Glasgow G4 0NG, Lanark, Scotland
基金
英国工程与自然科学研究理事会;
关键词
22;
D O I
10.1063/1.5083039
中图分类号
O59 [应用物理学];
学科分类号
摘要
Imaging of structural defects in a material can be realized with a radio-frequency atomic magnetometer by monitoring the material's response to a radio-frequency excitation field. We demonstrate two measurement configurations that enable the increase of the amplitude and phase contrast in images that represent a structural defect in electrically conductive and magnetically permeable samples. Both concepts involve the elimination of the excitation field component, orthogonal to the sample surface, from the atomic magnetometer signal. The first method relies on the implementation of a set of coils that directly compensates the excitation field component in the magnetometer signal. The second takes advantage of the fact that the radio-frequency magnetometer is not sensitive to the magnetic field oscillating along one of its axes. Results from simple modelling confirm the experimental observation and are discussed in detail.
引用
收藏
页数:8
相关论文
共 22 条
[1]   Review of advances in quantitative eddy current nondestructive evaluation [J].
Auld, BA ;
Moulder, JC .
JOURNAL OF NONDESTRUCTIVE EVALUATION, 1999, 18 (01) :3-36
[2]   Multichannel optical atomic magnetometer operating in unshielded environment [J].
Bevilacqua, Giuseppe ;
Biancalana, Valerio ;
Chessa, Piero ;
Dancheva, Yordanka .
APPLIED PHYSICS B-LASERS AND OPTICS, 2016, 122 (04)
[3]   Imaging of material defects with a radio-frequency atomic magnetometer [J].
Bevington, P. ;
Gartman, R. ;
Chalupczak, W. .
REVIEW OF SCIENTIFIC INSTRUMENTS, 2019, 90 (01)
[4]   Non-destructive structural imaging of steelwork with atomic magnetometers [J].
Bevington, P. ;
Gartman, R. ;
Chalupczak, W. ;
Deans, C. ;
Marmugi, L. ;
Renzoni, F. .
APPLIED PHYSICS LETTERS, 2018, 113 (06)
[5]   Room temperature femtotesla radio-frequency atomic magnetometer [J].
Chalupczak, W. ;
Godun, R. M. ;
Pustelny, S. ;
Gawlik, W. .
APPLIED PHYSICS LETTERS, 2012, 100 (24)
[6]   Radio-Frequency Spectroscopy as a Tool for Studying Coherent Spin Dynamics and for Application to Radio-Frequency Magnetometry [J].
Chalupczak, Witold ;
Godun, Rachel M. ;
Pustelny, Szymon .
ADVANCES IN ATOMIC, MOLECULAR, AND OPTICAL PHYSICS, VOL 67, 2018, 67 :297-336
[7]   Through-barrier electromagnetic imaging with an atomic magnetometer [J].
Deans, Cameron ;
Marmugi, Luca ;
Renzoni, Ferruccio .
OPTICS EXPRESS, 2017, 25 (15) :17911-17917
[8]   Electromagnetic induction imaging with a radio-frequency atomic magnetometer [J].
Deans, Cameron ;
Marmugi, Luca ;
Hussain, Sarah ;
Renzoni, Ferruccio .
APPLIED PHYSICS LETTERS, 2016, 108 (10)
[9]   Giant magnetoresistance-based eddy-current sensor [J].
Dogaru, T ;
Smith, ST .
IEEE TRANSACTIONS ON MAGNETICS, 2001, 37 (05) :3831-3838
[10]  
Dogaru T., 2000, Nondestructive Testing and Evaluation, V16, P31