A machine-learning phase classification scheme for anomaly detection in signals with periodic characteristics

被引:8
作者
Ahrens, Lia [1 ]
Ahrens, Julian [1 ]
Schotten, Hans D. [1 ,2 ]
机构
[1] Deutsch Forschungszentrum Kunstl Intelligenz, Trippstadter Str 122, D-67663 Kaiserslautern, Germany
[2] Tech Univ Kaiserslautern, Paul Ehrlich Str 11, D-67663 Kaiserslautern, Germany
关键词
Anomaly detection; Time series analysis; Phase classification; Machine learning; Convolutional neural networks; PREDICTION;
D O I
10.1186/s13634-019-0619-3
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper, we propose a novel machine-learning method for anomaly detection applicable to data with periodic characteristics where randomly varying period lengths are explicitly allowed. A multi-dimensional time series analysis is conducted by training a data-adapted classifier consisting of deep convolutional neural networks performing phase classification. The entire algorithm including data pre-processing, period detection, segmentation, and even dynamic adjustment of the neural networks is implemented for fully automatic execution. The proposed method is evaluated on three example datasets from the areas of cardiology, intrusion detection, and signal processing, presenting reasonable performance.
引用
收藏
页数:23
相关论文
共 32 条
[1]   LEARNING LONG-TERM DEPENDENCIES WITH GRADIENT DESCENT IS DIFFICULT [J].
BENGIO, Y ;
SIMARD, P ;
FRASCONI, P .
IEEE TRANSACTIONS ON NEURAL NETWORKS, 1994, 5 (02) :157-166
[2]   Dilated convolutional neural networks for time series forecasting [J].
Borovykh, Anastasia ;
Bohte, Sander ;
Oosterlee, Cornelis W. .
JOURNAL OF COMPUTATIONAL FINANCE, 2019, 22 (04) :73-101
[3]  
Bousseljot R., 1995, Em: Biomedizinische Technik/Biomedical Engineering, V40, P317, DOI DOI 10.1515/BMTE.1995.40.S1.317
[4]  
Box G., 2008, Wiley Series in Probability, Vfourth
[5]   LOF: Identifying density-based local outliers [J].
Breunig, MM ;
Kriegel, HP ;
Ng, RT ;
Sander, J .
SIGMOD RECORD, 2000, 29 (02) :93-104
[6]  
Dang TT, 2015, 2015 IEEE INTERNATIONAL CONFERENCE ON DIGITAL SIGNAL PROCESSING (DSP), P507, DOI 10.1109/ICDSP.2015.7251924
[7]   Linear affine transformations between 3-lead (Frank XYZ leads) vectorcardiogram and 12-lead electrocardiogram signals [J].
Dawson, Drew ;
Yang, Hui ;
Malshe, Milind ;
Bukkapatnam, Satish T. S. ;
Benjamin, Bruce ;
Komanduri, Ranga .
JOURNAL OF ELECTROCARDIOLOGY, 2009, 42 (06) :622-630
[8]  
Elliott R. J., 1995, STOCHASTIC MODELLING
[9]   AN ACCURATE, CLINICALLY PRACTICAL SYSTEM FOR SPATIAL VECTORCARDIOGRAPHY [J].
FRANK, E .
CIRCULATION, 1956, 13 (05) :737-749
[10]  
Gers FA, 1999, IEE CONF PUBL, P850, DOI [10.1162/089976600300015015, 10.1049/cp:19991218]