Monotonicity formulas for obstacle problems with Lipschitz coefficients

被引:15
作者
Focardi, M. [1 ]
Gelli, M. S. [2 ]
Spadaro, E. [3 ]
机构
[1] Univ Florence, DiMaI U Dini, I-50134 Florence, Italy
[2] Univ Pisa, Dipartimento Matemat, I-56127 Pisa, Italy
[3] Max Planck Inst Math Nat Wissensch, D-04103 Leipzig, Germany
关键词
NONLINEAR ELLIPTIC-EQUATIONS; FREE-BOUNDARY; 2-PHASE PROBLEMS; REGULARITY; 2ND-ORDER; OPERATORS; BEHAVIOR;
D O I
10.1007/s00526-015-0835-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove quasi-monotonicity formulas for classical obstacle-type problems with energies being the sum of a quadratic form with Lipschitz coefficients, and a Holder continuous linear term. With the help of those formulas we are able to carry out the full analysis of the regularity of free-boundary points following the approaches by Caffarelli (J Fourier Anal Appl 4(4-5), 383-402, 1998), Monneau (J Geom Anal 13(2), 359-389, 2003), and Weiss (Invent Math 138(1), 23-50, 1999).
引用
收藏
页码:1547 / 1573
页数:27
相关论文
共 31 条
[1]   VARIATIONAL-PROBLEMS WITH 2 PHASES AND THEIR FREE BOUNDARIES [J].
ALT, HW ;
CAFFARELLI, LA ;
FRIEDMAN, A .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1984, 282 (02) :431-461
[2]  
[Anonymous], 1980, Pure and Applied Mathematics
[3]  
[Anonymous], 2005, A geometric approach to free boundary problems
[4]  
[Anonymous], 1988, VARIATIONAL PRINCIPL
[5]   A THEOREM OF REAL ANALYSIS AND ITS APPLICATION TO FREE-BOUNDARY PROBLEMS [J].
ATHANASOPOULOS, I ;
CAFFARELLI, LA .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1985, 38 (05) :499-502
[6]  
Blank I, 2001, INDIANA U MATH J, V50, P1077
[7]   BOUNDARY-BEHAVIOR OF NONNEGATIVE SOLUTIONS OF ELLIPTIC-OPERATORS IN DIVERGENCE FORM [J].
CAFFARELLI, L ;
FABES, E ;
MORTOLA, S ;
SALSA, S .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1981, 30 (04) :621-640
[8]  
Caffarelli L. A., 1998, LEZIONI FERMIANE ACC
[9]   The obstacle problem revisited [J].
Caffarelli, LA .
JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 1998, 4 (4-5) :383-402
[10]   REGULARITY OF FREE BOUNDARIES IN HIGHER DIMENSIONS [J].
CAFFARELLI, LA .
ACTA MATHEMATICA, 1977, 139 (3-4) :155-184