GM-CSF Grown Bone Marrow Derived Cells Are Composed of Phenotypically Different Dendritic Cells and Macrophages

被引:81
作者
Na, Yi Rang
Jung, Daun
Gu, Gyo Jeong
Seok, Seung Hyeok [1 ]
机构
[1] Seoul Natl Univ, Coll Med, Dept Microbiol & Immunol, Seoul 03080, South Korea
关键词
dendritic cell; GM-CSF; macrophage; phenotype; GENE-EXPRESSION; IMMUNE CELLS; LINEAGE; INFLAMMATION; PROGENITOR; MONOCYTES; INFECTION; PROFILES; SUBSETS;
D O I
10.14348/molcells.2016.0160
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Granulocyte-macrophage colony stimulating factor (GM-CSF) has a role in inducing emergency hematopoiesis upon exposure to inflammatory stimuli. Although GM-CSF generated murine bone marrow derived cells have been widely used as macrophages or dendritic cells in research, the exact characteristics of each cell population have not yet been defined. Here we discriminated GM-CSF grown bone marrow derived macrophages (GM-BMMs) from dendritic cells (GM-BMDCs) in several criteria. After C57BL/6J mice bone marrow cell culture for 7 days with GM-CSF supplementation, two main populations were observed in the attached cells based on MHCII and F4/80 marker expressions. GM-BMMs had MHCII(low)F4/80(high) as well as CD11c(+)CD11b(high)CD80(-)CD64(+)MerTK(+) phenotypes. In contrast, GM-BMDCs had MHCII(high)F4/80(low) and CD11c(high)CD8 alpha(-)CD11b(+)CD80(+)CD64(-)MerTK(low) phenotypes. Interestingly, the GM-BMM population increased but GM-BMDCs decreased in a GM-CSF dose-dependent manner. Functionally, GM-BMMs showed extremely high phagocytic abilities and produced higher IL-10 upon LPS stimulation. GM-BMDCs, however, could not phagocytose as well, but were efficient at producing TNF alpha, IL-1 beta, IL-12p70 and IL-6 as well as inducing T cell proliferation. Finally, whole transcriptome analysis revealed that GM-BMMs and GM-BMDCs are overlap with in vivo resident macrophages and dendritic cells, respectively. Taken together, our study shows the heterogeneicity of GM-CSF derived cell populations, and specifically characterizes GM-CSF derived macrophages compared to dendritic cells.
引用
收藏
页码:734 / 741
页数:8
相关论文
共 27 条
[11]   Gene-expression profiles and transcriptional regulatory pathways that underlie the identity and diversity of mouse tissue macrophages [J].
Gautier, Emmanuel L. ;
Shay, Tal ;
Miller, Jennifer ;
Greter, Melanie ;
Jakubzick, Claudia ;
Ivanov, Stoyan ;
Helft, Julie ;
Chow, Andrew ;
Elpek, Kutlu G. ;
Gordonov, Simon ;
Mazloom, Amin R. ;
Ma'ayan, Avi ;
Chua, Wei-Jen ;
Hansen, Ted H. ;
Turley, Shannon J. ;
Merad, Miriam ;
Randolph, Gwendalyn J. .
NATURE IMMUNOLOGY, 2012, 13 (11) :1118-1128
[12]   Dendritic Cell and Macrophage Heterogeneity In Vivo [J].
Hashimoto, Daigo ;
Miller, Jennifer ;
Merad, Miriam .
IMMUNITY, 2011, 35 (03) :323-335
[13]   GM-CSF Mouse Bone Marrow Cultures Comprise a Heterogeneous Population of CD11c+MHCII+ Macrophages and Dendritic Cells [J].
Helft, Julie ;
Boettcher, Jan ;
Chakravarty, Probir ;
Zelenay, Santiago ;
Huotari, Jatta ;
Schraml, Barbara U. ;
Goubau, Delphine ;
Reis e Sousa, Caetano .
IMMUNITY, 2015, 42 (06) :1197-1211
[14]   The Immunological Genome Project: networks of gene expression in immune cells [J].
Heng, Tracy S. P. ;
Painter, Michio W. .
NATURE IMMUNOLOGY, 2008, 9 (10) :1091-1094
[15]   The granulocyte-macrophage colony-stimulating factor receptor: linking its structure to cell signaling and its role in disease [J].
Hercus, Timothy R. ;
Thomas, Daniel ;
Guthridge, Mark A. ;
Ekert, Paul G. ;
King-Scott, Jack ;
Parker, Michael W. ;
Lopez, Angel F. .
BLOOD, 2009, 114 (07) :1289-1298
[16]   GRANULOCYTES, MACROPHAGES, AND DENDRITIC CELLS ARISE FROM A COMMON MAJOR HISTOCOMPATIBILITY COMPLEX CLASS-II-NEGATIVE PROGENITOR IN MOUSE BONE-MARROW [J].
INABA, K ;
INABA, M ;
DEGUCHI, M ;
HAGI, K ;
YASUMIZU, R ;
IKEHARA, S ;
MURAMATSU, S ;
STEINMAN, RM .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1993, 90 (07) :3038-3042
[17]   Dendritic cells: Specialized and regulated antigen processing machines [J].
Mellman, I ;
Steinman, RM .
CELL, 2001, 106 (03) :255-258
[18]   Deciphering the transcriptional network of the dendritic cell lineage [J].
Miller, Jennifer C. ;
Brown, Brian D. ;
Shay, Tal ;
Gautier, Emmanuel L. ;
Jojic, Vladimir ;
Cohain, Ariella ;
Pandey, Gaurav ;
Leboeuf, Marylene ;
Elpek, Kutlu G. ;
Helft, Julie ;
Hashimoto, Daigo ;
Chow, Andrew ;
Price, Jeremy ;
Greter, Melanie ;
Bogunovic, Milena ;
Bellemare-Pelletier, Angelique ;
Frenette, Paul S. ;
Randolph, Gwendalyn J. ;
Turley, Shannon J. ;
Merad, Miriam .
NATURE IMMUNOLOGY, 2012, 13 (09) :888-899
[19]   Macrophage Activation and Polarization: Nomenclature and Experimental Guidelines [J].
Murray, Peter J. ;
Allen, Judith E. ;
Biswas, Subhra K. ;
Fisher, Edward A. ;
Gilroy, Derek W. ;
Goerdt, Sergij ;
Gordon, Siamon ;
Hamilton, John A. ;
Ivashkiv, Lionel B. ;
Lawrence, Toby ;
Locati, Massimo ;
Mantovani, Alberto ;
Martinez, Fernando O. ;
Mege, Jean-Louis ;
Mosser, David M. ;
Natoli, Gioacchino ;
Saeij, Jeroen P. ;
Schultze, Joachim L. ;
Shirey, Kari Ann ;
Sica, Antonio ;
Suttles, Jill ;
Udalova, Irina ;
van Ginderachter, Jo A. ;
Vogel, Stefanie N. ;
Wynn, Thomas A. .
IMMUNITY, 2014, 41 (01) :14-20
[20]   Developmental stages of myeloid dendritic cells in mouse bone marrow [J].
Nikolic, T ;
de Bruijn, MFTR ;
Lutz, MB ;
Leenen, PJM .
INTERNATIONAL IMMUNOLOGY, 2003, 15 (04) :515-524