Some properties of circulant matrices with Ducci sequences

被引:6
作者
Solak, Suleyman [1 ]
Bahsi, Mustafa [2 ]
机构
[1] NE Univ, AK Educ Fac, TR-42090 Meram, Konya, Turkey
[2] Aksaray Univ, Educ Fac, Aksaray, Turkey
关键词
Ducci sequence; Circulant matrix; Norm; N-NUMBER GAME; FIBONACCI; NORMS;
D O I
10.1016/j.laa.2017.09.010
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A Ducci sequence is the sequence {X, DX, (DX)-X-2,...} generated by n-tuples X = (x(1), x(2), ..., x(n)) is an element of Z(n), where DX = D (x(1), x(2), ..., x(n)) = (vertical bar x(2) - x(1)vertical bar, vertical bar x(3) - x(2)vertical bar, ..., vertical bar x(n) - x(1)vertical bar). Equivalently, the Ducci sequence of n-vector X may be defined as {(DX)-X-k}, where k = 0,1,2,... and (DX)-X-k denotes k times iterated vector X. In this study, we examine properties of the matrix D (C-n), which results from applying the Ducci map to the rows of the circulant matrix C-n, with first row (c(0), c(1), ... c(n-1)). (C) 2017 Elsevier Inc. All rights reserved.
引用
收藏
页码:557 / 568
页数:12
相关论文
共 23 条
  • [1] Bahsi M., 2010, Int. J. Contemp. Math. Sciences, V5, P1213
  • [2] BREUER F, 2007, INTEGERS ELECT J COM, V7, pA24
  • [3] Ducci-sequences and cyclotomic polynomials
    Breuer, Florian
    Lotter, Ernest
    van der Merwe, Brink
    [J]. FINITE FIELDS AND THEIR APPLICATIONS, 2007, 13 (02) : 293 - 304
  • [4] Brockman G, 2007, FIBONACCI QUART, V45, P155
  • [5] BROWN R, 2003, PERIOD MATH HUNG, V47, P45
  • [6] Calkin NJ, 2005, FIBONACCI QUART, V43, P53
  • [7] Ciamberlini C., 1937, PERIODICHE MATEMATIC, V17, P25
  • [8] Davis PJ., 1979, Circulant Matrices
  • [9] EHRLICH A, 1990, FIBONACCI QUART, V28, P302
  • [10] GRONE B, 1984, LINEAR MULTILINEAR A, V16, P305