Finite-Time Stability of Atangana-Baleanu Fractional-Order Linear Systems

被引:8
|
作者
Sheng, Jiale [1 ]
Jiang, Wei [1 ]
Pang, Denghao [1 ,2 ]
机构
[1] Anhui Univ, Sch Math Sci, Hefei 230601, Peoples R China
[2] Anhui Univ, Sch Internet, Hefei 230601, Peoples R China
基金
中国国家自然科学基金;
关键词
DIFFERENTIAL-EQUATIONS; DELAY;
D O I
10.1155/2020/1727358
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper investigates a fractional-order linear system in the frame of Atangana-Baleanu fractional derivative. First, we prove that some properties for the Caputo fractional derivative also hold in the sense of AB fractional derivative. Subsequently, several sufficient criteria to guarantee the finite-time stability and the finite-time boundedness for the system are derived. Finally, an example is presented to illustrate the validity of our main results.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Finite-Time Passivity for Atangana–Baleanu–Caputo Fractional-Order Systems with Nonlinear Perturbations
    Nguyen Huu Sau
    Nguyen Truong Thanh
    Nguyen Thi Thanh Huyen
    Mai Viet Thuan
    Circuits, Systems, and Signal Processing, 2022, 41 : 6774 - 6787
  • [2] Finite-Time Passivity for Atangana-Baleanu-Caputo Fractional-Order Systems with Nonlinear Perturbations
    Sau, Nguyen Huu
    Thanh, Nguyen Truong
    Huyen, Nguyen Thi Thanh
    Thuan, Mai Viet
    CIRCUITS SYSTEMS AND SIGNAL PROCESSING, 2022, 41 (12) : 6774 - 6787
  • [3] Finite-time stability of linear stochastic fractional-order systems with time delay
    Lassaad Mchiri
    Abdellatif Ben Makhlouf
    Dumitru Baleanu
    Mohamed Rhaima
    Advances in Difference Equations, 2021
  • [4] Finite-time stability of linear fractional-order time-delay systems
    Naifar, Omar
    Nagy, A. M.
    Ben Makhlouf, Abdellatif
    Kharrat, Mohamed
    Hammami, Mohamed Ali
    INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 2019, 29 (01) : 180 - 187
  • [5] Finite-time stability of linear stochastic fractional-order systems with time delay
    Mchiri, Lassaad
    Ben Makhlouf, Abdellatif
    Baleanu, Dumitru
    Rhaima, Mohamed
    ADVANCES IN DIFFERENCE EQUATIONS, 2021, 2021 (01)
  • [6] Finite-time stability of fractional-order nonlinear systems
    Feng, Zaiyong
    Xiang, Zhengrong
    CHAOS, 2024, 34 (02)
  • [7] Stability analysis of Atangana-Baleanu fractional stochastic differential systems with impulses
    Dhayal, Rajesh
    Gomez-Aguilar, J. F.
    Torres-Jimenez, J.
    INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 2022, 53 (16) : 3481 - 3495
  • [8] Numerical Analysis of Fractional-Order Parabolic Equation Involving Atangana-Baleanu Derivative
    Alesemi, Meshari
    SYMMETRY-BASEL, 2023, 15 (01):
  • [9] Analysis of Atangana-Baleanu fractional-order SEAIR epidemic model with optimal control
    Deressa, Chernet Tuge
    Duressa, Gemechis File
    ADVANCES IN DIFFERENCE EQUATIONS, 2021, 2021 (01)
  • [10] Finite-Time Stability for Caputo Nabla Fractional-Order Switched Linear Systems
    Xu, Peng
    Long, Fei
    Wang, Qixiang
    Tian, Ji
    Yang, Xiaowu
    Mo, Lipo
    FRACTAL AND FRACTIONAL, 2022, 6 (11)