ASYMPTOTIC EXPANSION OF THE INVARIANT MEASURE FOR BALLISTIC RANDOM WALK IN THE LOW DISORDER REGIME

被引:3
作者
Campos, David [1 ]
Ramirez, Alejandro F. [2 ]
机构
[1] Univ Costa Rica, Escuela Matemat, Ciudad Univ Rodrigo Facio, San Jose, Costa Rica
[2] Pontificia Univ Catolica Chile, Fac Matemat, Avda Vicuna Mackenna 4860, Santiago 7820436, Chile
关键词
Random walk in random environment; Green function; invariant measure; RANDOM ENVIRONMENT; LARGE NUMBERS; OF-VIEW; POINTS; LAW;
D O I
10.1214/17-AOP1175
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider a random walk in random environment in the low disorder regime on Z(d), that is, the probability that the random walk jumps from a site x to a nearest neighboring site x + e is given by p(e) + epsilon xi(x, e), where p(e) is deterministic, {{xi(x, e) : vertical bar e vertical bar(1) = 1} : x is an element of Z(d)} are i.i.d. and epsilon > 0 is a parameter, which is eventually chosen small enough. We establish an asymptotic expansion in epsilon for the invariant measure of the environmental process whenever a ballisticity condition is satisfied. As an application of our expansion, we derive a numerical expression up to first order in epsilon for the invariant measure of random perturbations of the simple symmetric random walk in dimensions d = 2.
引用
收藏
页码:4675 / 4699
页数:25
相关论文
共 19 条
[1]   An invariance principle for a class of non-ballistic random walks in random environment [J].
Baur, Erich .
PROBABILITY THEORY AND RELATED FIELDS, 2016, 166 (1-2) :463-514
[2]   LOCAL LIMIT THEOREM AND EQUIVALENCE OF DYNAMIC AND STATIC POINTS OF VIEW FOR CERTAIN BALLISTIC RANDOM WALKS IN IID ENVIRONMENTS [J].
Berger, Noam ;
Cohen, Moran ;
Rosenthal, Ron .
ANNALS OF PROBABILITY, 2016, 44 (04) :2889-2979
[3]   Effective Polynomial Ballisticity Conditions for Random Walk in Random Environment [J].
Berger, Noam ;
Drewitz, Alexander ;
Ramirez, Alejandro F. .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2014, 67 (12) :1947-1973
[4]   Cut points and diffusive random walks in random environment [J].
Bolthausen, E ;
Sznitman, AS ;
Zeitouni, O .
ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2003, 39 (03) :527-555
[5]  
Bolthausen E., 2002, METHODS APPL ANAL, V9, P345
[6]   RANDOM-WALKS IN ASYMMETRIC RANDOM-ENVIRONMENTS [J].
BRICMONT, J ;
KUPIAINEN, A .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1991, 142 (02) :345-420
[7]   EINSTEIN RELATION FOR RANDOM WALKS IN RANDOM ENVIRONMENT [J].
Guo, Xiaoqin .
ANNALS OF PROBABILITY, 2016, 44 (01) :324-359
[8]   GENERALIZED RANDOM-WALK IN A RANDOM ENVIRONMENT [J].
KALIKOW, SA .
ANNALS OF PROBABILITY, 1981, 9 (05) :753-768
[9]  
Kato T., 1995, PERTURBATION THEORY, DOI [10.1007/978-3-642-66282-9, DOI 10.1007/978-3-642-66282-9, DOI 10.1007/978-3-642-53393-8]
[10]  
Lawler G. F., 2010, Cambridge Studies in Advanced Mathematics, V123, DOI [DOI 10.1017/CBO9780511750854, 10.1017/CBO9780511750854]