Dynamic process fault isolation by partial DPCA

被引:0
作者
Li, RY [1 ]
Rong, G [1 ]
机构
[1] Zhejiang Univ, Natl Key Lab Ind Control Technol, Inst Adv Proc Control, Hangzhou 310027, Peoples R China
关键词
fault isolation; structured residual; dynamic principal component analysis; partial PCA;
D O I
暂无
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Principal component analysis (PCA) is a popular tool in fault detecting of the complex plant, but offers little support on fault isolation. Partial PCA (PPCA) is well developed for its capability of fault isolation utilizing a structured residual. In this paper, partial dynamic PCA(PDPCA) is proposed to enhance the isolation ability of dynamic process, which is a method combining PPCA and dynamic PCA. Simulation of PDPCA on a CSTR shows the effectiveness of the proposed method.
引用
收藏
页码:69 / 77
页数:9
相关论文
共 50 条
[21]   Sensor Fault Isolation in a Liquid Flow Process Using Kalman Filter [J].
K. V. Nanditha Nair .
Automatic Control and Computer Sciences, 2019, 53 :310-319
[22]   Fault detection and isolation of an on-line analyzer for an ethylene cracking process [J].
Kampjarvi, Petteri ;
Sourander, Mauri ;
Komulainen, Tiina ;
Vatanski, Nikolai ;
Nikus, Mats ;
Jamsa-Jounela, Sirkka-Liisa .
CONTROL ENGINEERING PRACTICE, 2008, 16 (01) :1-13
[23]   Fault detection and isolation of ECG process using kernel principal components [J].
Chaouch, Hanen .
2017 INTERNATIONAL CONFERENCE ON ENGINEERING & MIS (ICEMIS), 2017,
[24]   Fault Accommodation of Multiple Faults for a Class of Nonlinear Uncertain Systems: A Dynamic Fault Isolation Information Framework [J].
Zhao, Dong ;
Shi, Yang ;
Li, Yueyang ;
Liu, Shuai .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2024, 69 (10) :7012-7019
[25]   Teacher-student-based contrastive autoencoder for industrial process fault isolation with limited fault data [J].
Jia, Mingwei ;
Xu, Danya ;
Yang, Tao ;
Liu, Yi ;
Gao, Zengliang .
JOURNAL OF THE FRANKLIN INSTITUTE, 2025, 362 (13)
[26]   Fault isolation in nonlinear systems with structured partial principal component analysis and clustering analysis [J].
Huang, YB ;
McAvoy, TJ ;
Gertler, J .
CANADIAN JOURNAL OF CHEMICAL ENGINEERING, 2000, 78 (03) :569-577
[27]   An interval-based approach for fault isolation and identification in continuous dynamic systems [J].
Gelso, Esteban R. ;
Castillo, Sandra M. ;
Armengol, Joaquim .
ARTIFICIAL INTELLIGENCE RESEARCH AND DEVELOPMENT, 2008, 184 :421-429
[28]   Parameter intervals used for fault isolation in non-linear dynamic systems [J].
Li, Zetao ;
Dahhou, Boutaieb .
INTERNATIONAL JOURNAL OF MODELLING IDENTIFICATION AND CONTROL, 2006, 1 (03) :215-229
[29]   Process Fault Isolation via Bayesian Lasso-based Reconstruction Analysis [J].
Yan, Zhengbing ;
Yao, Yuan .
27TH EUROPEAN SYMPOSIUM ON COMPUTER AIDED PROCESS ENGINEERING, PT B, 2017, 40B :1669-1674
[30]   Adaptive sparse principal component analysis for enhanced process monitoring and fault isolation [J].
Liu, Kangling ;
Fei, Zhengshun ;
Yue, Boxuan ;
Liang, Jun ;
Lin, Hai .
CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 2015, 146 :426-436