On the restricted almost unbiased two-parameter estimator in linear regression model

被引:6
作者
Huang, Hua [1 ,2 ]
Wu, Jibo [1 ,2 ]
Yi, Wende [1 ,2 ]
机构
[1] Chongqing Univ Arts & Sci, Sch Math & Finances, Chongqing 402160, Peoples R China
[2] Chongqing Univ Arts & Sci, Key Lab Grp & Graph Theories & Applicat, Chongqing, Peoples R China
基金
中国国家自然科学基金;
关键词
Linear regression model; Mean-squared error; Restricted two-parameter ridge estimator; Primary; 62J05; 62J07; RIDGE-REGRESSION;
D O I
10.1080/03610926.2015.1026991
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
ozkale and Kaciranlar introduced the restricted two-parameter estimator (RTPE) to deal with the well-known multicollinearity problem in linear regression model. In this paper, the restricted almost unbiased two-parameter estimator (RAUTPE) based on the RTPE is presented. The quadratic bias and mean-squared error of the proposed estimator is discussed and compared with the corresponding competitors in literatures. Furthermore, a numerical example and a Monte Carlo simulation study are given to explain some of the theoretical results.
引用
收藏
页码:1668 / 1678
页数:11
相关论文
共 19 条
[1]   Mean squared error matrix comparisons of some biased estimators in linear regression [J].
Akdeniz, F ;
Erol, H .
COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2003, 32 (12) :2389-2413
[2]   Combining two-parameter and principal component regression estimators [J].
Chang, Xinfeng ;
Yang, Hu .
STATISTICAL PAPERS, 2012, 53 (03) :549-562
[3]  
Gruber M., 1998, Improving Efficiency by Shrinkage: The James-Stein and Ridge Regression Estimators
[4]   RIDGE REGRESSION - BIASED ESTIMATION FOR NONORTHOGONAL PROBLEMS [J].
HOERL, AE ;
KENNARD, RW .
TECHNOMETRICS, 1970, 12 (01) :55-&
[5]  
Kaciranlar S., 1999, SANKHYA SER B, V61, P443
[6]   A new ridge-type estimator in stochastic restricted linear regression [J].
Li, Yalian ;
Yang, Hu .
STATISTICS, 2011, 45 (02) :123-130
[7]   A new stochastic mixed ridge estimator in linear regression model [J].
Li, Yalian ;
Yang, Hu .
STATISTICAL PAPERS, 2010, 51 (02) :315-323
[8]   Ridge regression in two-parameter solution [J].
Lipovetsky, S ;
Conklin, WM .
APPLIED STOCHASTIC MODELS IN BUSINESS AND INDUSTRY, 2005, 21 (06) :525-540
[9]   Using Liu-type estimator to combat collinearity [J].
Liu, KJ .
COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2003, 32 (05) :1009-1020
[10]  
LIU KJ, 1993, COMMUN STAT THEORY, V22, P393