New irreducible modules for Heisenberg and affine Lie algebras

被引:21
作者
Bekkert, Viktor [2 ]
Benkart, Georgia [1 ]
Futorny, Vyacheslav [3 ]
Kashuba, Iryna [3 ]
机构
[1] Univ Wisconsin, Dept Math, Madison, WI 53706 USA
[2] Univ Fed Minas Gerais, ICEx, Dept Matemat, BR-30123970 Belo Horizonte, MG, Brazil
[3] Univ Sao Paulo, Inst Math, BR-05314970 Sao Paulo, Brazil
基金
巴西圣保罗研究基金会;
关键词
Heisenberg Lie algebra; Affine Lie algebra; Irreducible module; Imaginary Verma module; VERMA MODULES; REPRESENTATIONS;
D O I
10.1016/j.jalgebra.2012.09.035
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study Z-graded modules of nonzero level with arbitrary weight multiplicities over Heisenberg Lie algebras and the associated generalized loop modules over affine Kac-Moody Lie algebras. We construct new families of such irreducible modules over Heisenberg Lie algebras. Our main result establishes the irreducibility of the corresponding generalized loop modules providing an explicit construction of many new examples of irreducible modules for affine Lie algebras. In particular, to any function phi : N -> {+/-} we associate phi-highest weight module over the Heisenberg Lie algebra and a phi-imaginary Verma module over the affine Lie algebra. We show that any phi-imaginary Verma module of nonzero level is irreducible. (C) 2012 Elsevier Inc. All rights reserved.
引用
收藏
页码:284 / 298
页数:15
相关论文
共 20 条
[1]   Indecomposable representations of generalized Weyl algebras [J].
Bavula, V ;
Bekkert, V .
COMMUNICATIONS IN ALGEBRA, 2000, 28 (11) :5067-5100
[2]  
Bekkert Viktor, 2004, CONT MATH, V343, P17
[3]  
Casati P., PREPRINT
[4]   NEW UNITARY REPRESENTATIONS OF LOOP-GROUPS [J].
CHARI, V ;
PRESSLEY, A .
MATHEMATISCHE ANNALEN, 1986, 275 (01) :87-104
[5]   INTEGRABLE REPRESENTATIONS OF AFFINE LIE-ALGEBRAS [J].
CHARI, V .
INVENTIONES MATHEMATICAE, 1986, 85 (02) :317-335
[6]   Whittaker modules for Heisenberg algebras and imaginary Whittaker modules for affine Lie algebras [J].
Christodoulopoulou, Konstantina .
JOURNAL OF ALGEBRA, 2008, 320 (07) :2871-2890
[7]   VERMA MODULES INDUCED FROM NONSTANDARD BOREL SUBALGEBRAS [J].
COX, B .
PACIFIC JOURNAL OF MATHEMATICS, 1994, 165 (02) :269-294
[8]  
Dimitrov I, 2009, CONTEMP MATH, V499, P61
[9]   Weight modules over generalized Weyl algebras [J].
Drozd, YA ;
Guzner, BL ;
Ovsienko, SA .
JOURNAL OF ALGEBRA, 1996, 184 (02) :491-504
[10]   Categories of induced modules for Lie algebras with triangular decomposition [J].
Futorny, V ;
König, S ;
Mazorchuk, V .
FORUM MATHEMATICUM, 2001, 13 (05) :641-661