SPECTRAL-SPATIAL CLASSIFICATION OF HYPERSPECTRAL IMAGES WITH GAUSSIAN PROCESS

被引:1
作者
Sun, Shujin [1 ]
Zhong, Ping [1 ]
Xiao, Huaitie [1 ]
Chen, Yuting [1 ]
Gong, Zhiqiang [1 ]
Wang, Runsheng [1 ]
机构
[1] Natl Univ Def Technol, ATR Lab, Sch Elect Sci & Engn, Changsha 410073, Hunan, Peoples R China
来源
2016 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS) | 2016年
关键词
Hyperspectral image classification; kernel methods; Gaussian process; spectral-spatial classification;
D O I
10.1109/IGARSS.2016.7729117
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper, a spectral-spatial classification method with Gaussian process was proposed for hyperspectral image classification. This method exploits the relationship among adjacent pixels and integrates it into spectral information to obtain spectral-spatial classification. In the proposed approach, the spatial information of a single pixel is weighted by the cosine similarity value between the adjacent pixels in the neighborhood. Experiments were conducted on the AVIRIS Indian Pines data set to evaluate the performance of the proposed approach. And the results demonstrated the effectiveness of the proposed methods to improve the classification performance by consideration of the spatial relationship between adjacent pixels in the hyperspectral image.
引用
收藏
页码:473 / 476
页数:4
相关论文
共 10 条
[1]   Gaussian Process Approach to Remote Sensing Image Classification [J].
Bazi, Yakoub ;
Melgani, Farid .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2010, 48 (01) :186-197
[2]   Hyperspectral Remote Sensing Data Analysis and Future Challenges [J].
Bioucas-Dias, Jose M. ;
Plaza, Antonio ;
Camps-Valls, Gustavo ;
Scheunders, Paul ;
Nasrabadi, Nasser M. ;
Chanussot, Jocelyn .
IEEE GEOSCIENCE AND REMOTE SENSING MAGAZINE, 2013, 1 (02) :6-36
[3]   Kernel-based methods for hyperspectral image classification [J].
Camps-Valls, G ;
Bruzzone, L .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2005, 43 (06) :1351-1362
[4]   Advances in Spectral-Spatial Classification of Hyperspectral Images [J].
Fauvel, Mathieu ;
Tarabalka, Yuliya ;
Benediktsson, Jon Atli ;
Chanussot, Jocelyn ;
Tilton, James C. .
PROCEEDINGS OF THE IEEE, 2013, 101 (03) :652-675
[5]   ON MEAN ACCURACY OF STATISTICAL PATTERN RECOGNIZERS [J].
HUGHES, GF .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1968, 14 (01) :55-+
[6]  
Lawrence N, 2005, J MACH LEARN RES, V6, P1783
[7]   Retrieval of Biophysical Parameters With Heteroscedastic Gaussian Processes [J].
Lazaro-Gredilla, Miguel ;
Titsias, Michalis K. ;
Verrelst, Jochem ;
Camps-Valls, Gustavo .
IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2014, 11 (04) :838-842
[8]   A Spatial-Contextual Support Vector Machine for Remotely Sensed Image Classification [J].
Li, Cheng-Hsuan ;
Kuo, Bor-Chen ;
Lin, Chin-Teng ;
Huang, Chih-Sheng .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2012, 50 (03) :784-799
[9]  
Rasmussen CE, 2005, ADAPT COMPUT MACH LE, P1
[10]   Active Learning With Gaussian Process Classifier for Hyperspectral Image Classification [J].
Sun, Shujin ;
Zhong, Ping ;
Xiao, Huaitie ;
Wang, Runsheng .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2015, 53 (04) :1746-1760