Integer-valued polynomials on algebras

被引:26
作者
Frisch, Sophie [1 ]
机构
[1] Graz Univ Technol, Inst Math A, A-8010 Graz, Austria
基金
奥地利科学基金会;
关键词
Integer-valued polynomials; Spectrum; Krull dimension; Matrix algebras; Polynomial rings; I-adic topology; Non-commutative algebras; Non-commuting variables; Polynomial functions; Polynomial mappings; INTERPOLATION; RINGS;
D O I
10.1016/j.jalgebra.2012.10.003
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let D be a domain with quotient field K and A a D-algebra. A polynomial with coefficients in K that maps every element of A to an element of A is called integer-valued on A. For commutative A we also consider integer-valued polynomials in several variables. For an arbitrary domain D and I an arbitrary ideal of D we show I-adic continuity of integer-valued polynomials on A. For Noetherian one-dimensional D, we determine spectrum and Krull dimension of the ring IntD(A) of integer-valued polynomials on A. We do the same for the ring of polynomials with coefficients in M-n(K), the K-algebra of n x n matrices, that map every matrix in M-n(D) to a matrix in M-n(D). (C) 2012 Elsevier Inc. All rights reserved.
引用
收藏
页码:414 / 425
页数:12
相关论文
共 50 条
[41]   Prufer domains of integer-valued polynomials and the two-generator property [J].
Park, Mi Hee .
JOURNAL OF ALGEBRA, 2021, 582 :232-243
[42]   Globalized pseudo-valuation domains of integer-valued polynomials on a subset [J].
Park, Mi Hee .
COMMUNICATIONS IN ALGEBRA, 2022, 50 (06) :2507-2516
[43]   Non-triviality conditions for integer-valued polynomial rings on algebras [J].
Peruginelli, Giulio ;
Werner, Nicholas J. .
MONATSHEFTE FUR MATHEMATIK, 2017, 183 (01) :177-189
[44]   Non-triviality conditions for integer-valued polynomial rings on algebras [J].
Giulio Peruginelli ;
Nicholas J. Werner .
Monatshefte für Mathematik, 2017, 183 :177-189
[45]   Integer-valued polynomials on valuation rings of global fields with prescribed lengths of factorizations [J].
Victor Fadinger-Held ;
Sophie Frisch ;
Daniel Windisch .
Monatshefte für Mathematik, 2023, 202 :773-789
[46]   Two general families of integer-valued polynomials associated with finite trigonometric sums [J].
Cvijovic, Djurdje .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2020, 488 (01)
[47]   Characterizing absolutely irreducible integer-valued polynomials over discrete valuation domains [J].
Hiebler, Moritz ;
Nakato, Sarah ;
Rissner, Roswitha .
JOURNAL OF ALGEBRA, 2023, 633 :696-721
[48]   Integer-valued polynomials on valuation rings of global fields with prescribed lengths of factorizations [J].
Fadinger-Held, Victor ;
Frisch, Sophie ;
Windisch, Daniel .
MONATSHEFTE FUR MATHEMATIK, 2023, 202 (04) :773-789
[49]   Split absolutely irreducible integer-valued polynomials over discrete valuation domains [J].
Frisch, Sophie ;
Nakato, Sarah ;
Rissner, Roswitha .
JOURNAL OF ALGEBRA, 2022, 602 :247-277
[50]   ANOTHER TWO FAMILIES OF INTEGER-VALUED POLYNOMIALS ASSOCIATED WITH FINITE TRIGONOMETRIC SUMS [J].
Cvijovic, Durde .
APPLICABLE ANALYSIS AND DISCRETE MATHEMATICS, 2021, 15 (01) :69-81