Almost commutative Q-algebras and derived brackets

被引:0
作者
Bruce, Andrew James [1 ]
机构
[1] Univ Luxembourg, Math Res Unit, Maison 6,Ave Fonte, L-4364 Esch Sur Alzette, Luxembourg
关键词
Noncommutative geometry; almost commutative algebras; Lie algebroids; Q-manifolds; NONCOMMUTATIVE SUPERGEOMETRY; DIFFERENTIAL-CALCULUS; LIE BRACKETS; Q-MANIFOLDS; DEFORMATIONS; GEOMETRY;
D O I
10.4171/JNCG/377
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We introduce the notion of almost commutative Q -algebras and demonstrate how the derived bracket formalism of Kosmann-Schwarzbach generalises to this setting. In particular, we construct 'almost commutative Lie algebroids' following Vaintrob's Q -manifold understanding of classical Lie algebroids. We show that the basic tenets of the theory of Lie algebroids carry over verbatim to the almost commutative world.
引用
收藏
页码:681 / 707
页数:27
相关论文
共 50 条
  • [21] Ultramatricial algebras over commutative chain semirings and application to MV-algebras
    Di Nola, Antonio
    Lenzi, Giacomo
    Tran Giang Nam
    FORUM MATHEMATICUM, 2020, 32 (02) : 287 - 305
  • [22] Resolution of stringy singularities by non-commutative algebras
    Berenstein, D
    Leigh, RG
    JOURNAL OF HIGH ENERGY PHYSICS, 2001, (06):
  • [23] A DARK SECTOR EXTENSION OF THE ALMOST-COMMUTATIVE STANDARD MODEL
    Stephan, Christoph A.
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2014, 29 (01):
  • [24] Commutative power-associative algebras of small dimension
    Rodrigues, Rodrigo Lucas
    Neto, Angelo Papa
    Vanegas, Elkin Quintero
    COMMUNICATIONS IN ALGEBRA, 2020, 48 (12) : 5056 - 5066
  • [25] On almost commutative Friedmann-Lemaitre-Robertson-Walker geometries
    Sitarz, Andrzej
    CLASSICAL AND QUANTUM GRAVITY, 2019, 36 (19)
  • [26] Schatten classes for Hilbert modules over commutative C*-algebras
    Stern, Abel B.
    van Suijlekom, Walter D.
    JOURNAL OF FUNCTIONAL ANALYSIS, 2021, 281 (04)
  • [27] On Steinberg algebras of Hausdorff ample groupoids over commutative semirings
    Tran Giang Nam
    Zumbraegel, Jens
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2021, 225 (04)
  • [28] A commutative algebra approach to multiplicative Hom-Lie algebras
    Chen, Yin
    Zhang, Runxuan
    LINEAR & MULTILINEAR ALGEBRA, 2023, 71 (07) : 1127 - 1144
  • [29] Derived brackets in bosonic string sigma-model
    Bernardes, Vinicius
    Mikhailov, Andrei
    Viana, Eggon
    NUCLEAR PHYSICS B, 2022, 982
  • [30] Almost contact Hom-Lie algebras and Sasakian Hom-Lie algebras
    Peyghan, E.
    Nourmohammadifar, L.
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2022, 21 (01)